Structured sparse array design exploiting two uniform subarrays for DOA estimation on moving platform

2021 ◽  
Vol 180 ◽  
pp. 107872
Author(s):  
Guodong Qin ◽  
Moeness G. Amin
Author(s):  
Xianxiang Yu Xianxiang Yu ◽  
Cuiguo Long Cuiguo Long ◽  
Shangwei Gao Shangwei Gao ◽  
Lingjiang Kong Lingjiang Kong

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Changbo Ye ◽  
Luo Chen ◽  
Beizuo Zhu

In this paper, a sparse array design problem for non-Gaussian signal direction of arrival (DOA) estimation is investigated. Compared with conventional second-order cumulant- (SOC-) based methods, fourth-order cumulant- (FOC-) based methods achieve improved DOA estimation performance by utilizing all information from received non-Gaussian sources. Considering the virtual sensor location of vectorized FOC-based methods can be calculated from the second order difference coarray of sum coarray (2-DCSC) of physical sensors, it is important to devise a sparse array design principle to obtain extended degree of freedom (DOF). Based on the properties of unfolded coprime linear array (UCLA), we formulate the sparse array design problem as a global postage-stamp problem (GPSP) and then present an array design method from GPSP perspective. Specifically, for vectorized FOC-based methods, we divide the process of obtaining physical sensor location into two steps; the first step is to obtain the two consecutive second order sum coarrays (2-SC), which can be modeled as GPSP, and the solutions to GPSP can also be utilized to determine the physical sensor location sets without interelement spacing coefficients. The second step is to adjust the physical sensor sets by multiplying the appropriate coprime coefficients, which is determined by the structure of UCLA. In addition, the 2-DCSC can be calculated from physical sensors directly, and the properties of UCLA are given to confirm the degree of freedom (DOF) of the proposed geometry. Simulation results validate the effectiveness and superiority of the proposed array geometry.


2021 ◽  
Vol 35 (11) ◽  
pp. 1435-1436
Author(s):  
Mehmet Hucumenoglu ◽  
Piya Pal

This paper considers the effect of sparse array geometry on the co-array signal subspace estimation error for Direction-of-Arrival (DOA) estimation. The second largest singular value of the signal covariance matrix plays an important role in controlling the distance between the true subspace and its estimate. For a special case of two closely-spaced sources impinging on the array, we explicitly compute the second largest singular value of the signal covariance matrix and show that it can be significantly larger for a nested array when compared against a uniform linear array with same number of sensors.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Li ◽  
Weijia Cui ◽  
Bin Ba ◽  
Haiyun Xu ◽  
Yankui Zhang

The performance of direction-of-arrival (DOA) estimation for sparse arrays applied to the distributed source is worse than that applied to the point source model. In this paper, we introduce the coprime array with a large array aperture into the DOA estimation algorithm of the exponential-type coherent distributed source. In particular, we focus on the fourth-order cumulant (FOC) of the received signal which can provide more useful information when the signal is non-Gaussian than when it is Gaussian. The proposed algorithm extends the array aperture by combining the sparsity of array space domain with the fourth-order cumulant characteristics of signals, which improves the estimation accuracy and degree of freedom (DOF). Firstly, the signal-received model of the sparse array is established, and the fourth-order cumulant matrix of the received signal of the sparse array is calculated based on the characteristics of distributed sources, which extend the array aperture. Then, the virtual array is constructed by the sum aggregate of physical array elements, and the position set of its maximum continuous part array element is obtained. Finally, the center DOA estimation of the distributed source is realized by the subspace method. The accuracy and DOF of the proposed algorithm are higher than those of the distributed signal parameter estimator (DSPE) algorithm and least-squares estimation signal parameters via rotational invariance techniques (LS-ESPRIT) algorithm when the array elements are the same. Complexity analysis and numerical simulations are provided to demonstrate the superiority of the proposed method.


2018 ◽  
Vol 66 (15) ◽  
pp. 4133-4146 ◽  
Author(s):  
Muran Guo ◽  
Yimin D. Zhang ◽  
Tao Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document