Simulation of steady-state rolling non-pneumatic mechanical elastic wheel using finite element method

2018 ◽  
Vol 85 ◽  
pp. 60-79 ◽  
Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Zhen Xiao ◽  
Mingmin Zhu ◽  
...  
Author(s):  
Humberto Alves da Silveira Monteiro ◽  
Guilherme Garcia Botelho ◽  
Roque Luiz da Silva Pitangueira ◽  
Rodrigo Peixoto ◽  
FELICIO BARROS

1994 ◽  
Vol 61 (4) ◽  
pp. 919-922 ◽  
Author(s):  
Taein Yeo ◽  
J. R. Barber

When heat is conducted across an interface between two dissimilar materials, theimoelastic distortion affects the contact pressure distribution. The existence of a pressure-sensitive thermal contact resistance at the interface can cause such systems to be unstable in the steady-state. Stability analysis for thermoelastic contact has been conducted by linear perturbation methods for one-dimensional and simple two-dimensional geometries, but analytical solutions become very complicated for finite geometries. A method is therefore proposed in which the finite element method is used to reduce the stability problem to an eigenvalue problem. The linearity of the underlying perturbation problem enables us to conclude that solutions can be obtained in separated-variable form with exponential variation in time. This factor can therefore be removed from the governing equations and the finite element method is used to obtain a time-independent set of homogeneous equations in which the exponential growth rate appears as a linear parameter. We therefore obtain a linear eigenvalue problem and stability of the system requires that all the resulting eigenvalues should have negative real part. The method is discussed in application to the simple one-dimensional system of two contacting rods. The results show good agreement with previous analytical investigations and give additional information about the migration of eigenvalues in the complex plane as the steady-state heat flux is varied.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950081 ◽  
Author(s):  
Zhenhuan Zhou ◽  
Junhai Fan ◽  
C. W. Lim ◽  
Dalun Rong ◽  
Xinsheng Xu

A novel size-dependent coupled symplectic and finite element method (FEM) is proposed to study the steady-state forced vibration of built-up nanobeam system resting on elastic foundations. The overall system is modeled as a combination of nonlocal Timoshenko beams. A new analytical subsystem modeling with formulation and another numerical subsystem modeling are developed and discussed. In the analytical subsystem model, the uniform nanobeams are modeled and solved by a new approach based on a series of analytical symplectic eigensolutions. The numerical subsystem model applies a nonlocal FEM to solve nonuniform nanobeams. Analytical and numerical solutions are presented, and a proper comparison between the two approaches is established. Comprehensive and accurate numerical result is subsequently presented to illustrate the accuracy and reliability of the coupled method. The new results established are expected to have reference values for future studies.


Sign in / Sign up

Export Citation Format

Share Document