scholarly journals Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches

Author(s):  
Ahmad Irfan ◽  
Muhammad Imran ◽  
Abdullah G. Al-Sehemi ◽  
Asma Tufail Shah ◽  
Mohamed Hussien ◽  
...  
2015 ◽  
Vol 45 (22) ◽  
pp. 2529-2545 ◽  
Author(s):  
Chandrika Nanjappa ◽  
Suresha Kumara T. Hanumanthappa ◽  
Gopalpur Nagendrappa ◽  
Pasura Subbaiah Sujan Ganapathy ◽  
Shirur Dakappa Shruthi ◽  
...  

2021 ◽  
Author(s):  
Yiyuan Luo ◽  
Juan Wang ◽  
Shuo Li ◽  
Yue Wu ◽  
Zhirui Wang ◽  
...  

Abstract Background Bletilla striata was the main medicine of many skin whitening classic formulas in traditional Chinese medicine (TCM) and was widely used in cosmetic industry recently. However, its active ingredient was still unclear and its fibrous roots were not used effectively. The aim of the present study was to discover and identify its potential anti-melanogenic active constituents by zebrafish model and molecular docking. Methods The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2’-azino-bis-(3-ethylbenthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The anti-melanogenic activity was assessed by tyrosinase inhibitory activity in vitro and melanin inhibitory in zebrafish. The chemical profiles were performed by ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Meanwhile, the potential anti-melanogenic active constituents were temporary identified by molecular docking. Results The 95% ethanol extract of B. striata fibrous roots (EFB) possesses the strongest DPPH, ABTS, FRAP and tyrosinase inhibition activity, with IC50 5.94 mg/L, 11.69 mg/L, 6.92 mmol FeSO4/g, and 58.92 mg/L, respectively. In addition, EFB and 95% ethanol extract of B. striata tuber (ETB) can significantly reduce the melanin synthesis of zebrafish embryos in dose-dependent manner. 39 chemical compositions, including 24 stilbenoids were tentatively identified from EFB and ETB. Molecular docking indicated that there were 83 (including 60 stilbenoids) and 85 (including 70 stilbenoids) compounds exhibit stronger binding affinities toward tyrosinase and adenylate cyclase. Conclusion The present findings supported the rationale for the use of EFB and ETB as natural skin-whitening agents in pharmaceutical and cosmetic industries.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bayan Abdi ◽  
Mona Fekadu ◽  
Digafie Zeleke ◽  
Rajalakshmanan Eswaramoorthy ◽  
Yadessa Melaku

Quinoline heterocycle is a useful scaffold to develop bioactive molecules used as anticancer, antimalaria, and antimicrobials. Inspired by their numerous biological activities, an attempt was made to synthesize a series of novel 7-chloroquinoline derivatives, including 2,7-dichloroquinoline-3-carbonitrile (5), 2,7-dichloroquinoline-3-carboxamide (6), 7-chloro-2-methoxyquinoline-3-carbaldehyde (7), 7-chloro-2-ethoxyquinoline-3-carbaldehyde (8), and 2-chloroquinoline-3-carbonitrile (12) by the application of Vilsmeier–Haack reaction and aromatic nucleophilic substitution of 2,7-dichloroquinoline-3-carbaldehyde. The carbaldehyde functional group was transformed into nitriles using POCl3 and NaN3, which was subsequently converted to amide using CH3CO2H and H2SO4. The compounds synthesized were screened for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes. Compounds 6 and 8 showed good activity against E. coli with an inhibition zone of 11.00 ± 0.04 and 12.00 ± 0.00 mm, respectively. Compound 5 had good activity against S. aureus and P. aeruginosa with an inhibition zone of 11.00 ± 0.03 mm relative to standard amoxicillin (18 ± 0.00 mm). Compound 7 displayed good activity against S. pyogenes with an inhibition zone of 11.00 ± 0.02 mm. The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and compounds 5 and 6 displayed the strongest antioxidant activity with IC50 of 2.17 and 0.31 µg/mL relative to ascorbic acid (2.41 µg/mL), respectively. The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with topoisomerase IIβ and E. coli DNA gyrase B. Compounds 6 (−6.4 kcal/mol) and 8 (−6.6 kcal/mol) exhibited better binding affinity in their in silico molecular docking against E. coli DNA gyrase. The synthesized compounds were also found to have minimum binding energy ranging from −6.9 to −7.3 kcal/mol against topoisomerase IIβ. The SwissADME predicted results showed that the synthesized compounds 5–8 and 12 satisfy Lipinski’s rule of five with zero violations. The ProTox-II predicted organ toxicity results revealed that all the synthesized compounds were inactive in hepatotoxicity, immunotoxicity, mutagenicity, and cytotoxicity. The findings of the in vitro antibacterial and molecular docking analysis suggested that compound 8 might be considered a hit compound for further analysis as antibacterial and anticancer drug. The radical scavenging activity displayed by compounds 5 and 6 suggests these compounds as a radical scavenger.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiyuan Luo ◽  
Juan Wang ◽  
Shuo Li ◽  
Yue Wu ◽  
Zhirui Wang ◽  
...  

Abstract Background Bletilla striata is the main medicine of many skin whitening classic formulas in traditional Chinese medicine (TCM) and is widely used in cosmetic industry recently. However, its active ingredients are still unclear and its fibrous roots are not used effectively. The aim of the present study is to discover and identify its potential anti-melanogenic active constituents by zebrafish model and molecular docking. Methods The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis-(3-ethylbenthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The anti-melanogenic activity was assessed by tyrosinase inhibitory activity in vitro and melanin inhibitory in zebrafish. The chemical profiles were performed by ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Meanwhile, the potential anti-melanogenic active constituents were temporary identified by molecular docking. Results The 95% ethanol extract of B. striata fibrous roots (EFB) possessed the strongest DPPH, ABTS, FRAP and tyrosinase inhibitory activities, with IC50 5.94 mg/L, 11.69 mg/L, 6.92 mmol FeSO4/g, and 58.92 mg/L, respectively. In addition, EFB and 95% ethanol extract of B. striata tuber (ETB) significantly reduced the melanin synthesis of zebrafish embryos in a dose-dependent manner. 39 chemical compositions, including 24 stilbenoids were tentatively identified from EFB and ETB. Molecular docking indicated that there were 83 (including 60 stilbenoids) and 85 (including 70 stilbenoids) compounds exhibited stronger binding affinities toward tyrosinase and adenylate cyclase. Conclusion The present findings supported the rationale for the use of EFB and ETB as natural skin-whitening agents in pharmaceutical and cosmetic industries.


2019 ◽  
Vol 1179 ◽  
pp. 205-215 ◽  
Author(s):  
Halil Gökce ◽  
Yelda Bingöl Alpaslan ◽  
Celal Tuğrul Zeyrek ◽  
Erbil Ağar ◽  
Aytaç Güder ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
S Ngom ◽  
L Breant ◽  
C Antheaume ◽  
C Minker ◽  
A Leick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document