Theta-gamma cross-frequency coupling during rapid-eye-movement sleep is associated with declarative memory retention and with working memory performance in seniors but not young adults

2019 ◽  
Vol 64 ◽  
pp. S416-S417
Author(s):  
I. Mameri-Arab ◽  
O. Weiner ◽  
J. O'Byrne ◽  
E. Lachapelle ◽  
L. Seguin ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125752 ◽  
Author(s):  
Esther Yuet Ying Lau ◽  
Mark Lawrence Wong ◽  
Kristy Nga Ting Lau ◽  
Florence Wai Ying Hui ◽  
Chia-huei Tseng

SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Mojtaba Bandarabadi ◽  
Richard Boyce ◽  
Carolina Gutierrez Herrera ◽  
Claudio L Bassetti ◽  
Sylvain Williams ◽  
...  

Abstract Theta phase modulates gamma amplitude in hippocampal networks during spatial navigation and rapid eye movement (REM) sleep. This cross-frequency coupling has been linked to working memory and spatial memory consolidation; however, its spatial and temporal dynamics remains unclear. Here, we first investigate the dynamics of theta–gamma interactions using multiple frequency and temporal scales in simultaneous recordings from hippocampal CA3, CA1, subiculum, and parietal cortex in freely moving mice. We found that theta phase dynamically modulates distinct gamma bands during REM sleep. Interestingly, we further show that theta–gamma coupling switches between recorded brain structures during REM sleep and progressively increases over a single REM sleep episode. Finally, we show that optogenetic silencing of septohippocampal GABAergic projections significantly impedes both theta–gamma coupling and theta phase coherence. Collectively, our study shows that phase-space (i.e. cross-frequency coupling) coding of information during REM sleep is orchestrated across time and space consistent with region-specific processing of information during REM sleep including learning and memory.


Author(s):  
Agatha Lenartowicz ◽  
Holly Truong ◽  
Kristen D. Enriquez ◽  
Julia Webster ◽  
Jean-Baptiste Pochon ◽  
...  

AbstractWorking memory (WM) has been defined as the active maintenance and flexible updating of goal-relevant information in a form that has limited capacity and resists interference. Complex measures of WM recruit multiple subprocesses, making it difficult to isolate specific contributions of putatively independent subsystems. The present study was designed to determine whether neurophysiological indicators of proposed subprocesses of WM predict WM performance. We recruited 200 individuals defined by care-seeking status and measured neural responses using electroencephalography (EEG), while participants performed four WM tasks. We extracted spectral and time-domain EEG features from each task to quantify each of the hypothesized WM subprocesses: maintenance (storage of content), goal maintenance, and updating. We then used EEG measures of each subprocess as predictors of task performance to evaluate their contribution to WM. Significant predictors of WM capacity included contralateral delay activity and frontal theta, features typically associated with maintenance (storage of content) processes. In contrast, significant predictors of reaction time and its variability included contingent negative variation and the P3b, features typically associated with goal maintenance and updating. Broadly, these results suggest two principal dimensions that contribute to WM performance, tonic processes during maintenance contributing to capacity, and phasic processes during stimulus processing that contribute to response speed and variability. The analyses additionally highlight that reliability of features across tasks was greater (and comparable to that of WM performance) for features associated with stimulus processing (P3b and alpha), than with maintenance (gamma, theta and cross-frequency coupling).


2019 ◽  
Author(s):  
Krugliakova Elena ◽  
Volk Carina ◽  
Jaramillo Valeria ◽  
Sousouri Georgia ◽  
Huber Reto

AbstractThe activity of different brain networks in non-rapid eye movement (NREM) sleep is regulated locally in an experience-dependent manner, reflecting the extent of the network load during wakefulness. In particular, improved task performance after sleep correlates with the local post-learning power increase of neocortical slow waves and faster oscillations such as sleep spindles and their temporal coupling. Recently, it was demonstrated that by targeting slow waves in a particular region at a particular phase with closed-loop auditory stimulation it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. Based on this finding, we tested whether closed-loop auditory stimulation targeting the up-phase of slow-waves over the right sensorimotor area might affect power in delta, theta and sigma bands and coupling between these oscillations within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances power in delta, theta and sigma bands, changes in cross-frequency coupling of these oscillations were more spatially restricted. In particular, stimulation induced a significant decrease of delta-theta coupling in frontal channels, within the area of the strongest baseline coupling between these frequency bands. In contrast, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent memory formation within the brain network of interest.


Sign in / Sign up

Export Citation Format

Share Document