hippocampal networks
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 59)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Masanori Nomoto ◽  
Emi Murayama ◽  
Shuntaro Ohno ◽  
Reiko Okubo-Suzuki ◽  
Shin-ichi Muramatsu ◽  
...  

In entorhinal-hippocampal networks, the trisynaptic pathway, including the CA3 recurrent circuit, processes episodes of context and space. Recurrent connectivity can generate reverberatory activity, an intrinsic activity pattern of neurons that occurs after sensory inputs have ceased. However, the role of reverberatory activity in memory encoding remains incompletely understood. Here we demonstrate that in mice, synchrony between conditioned stimulus (CS) and unconditioned stimulus (US)-responsible cells occurs during the reverberatory phase, lasting for approximately 15 s, but not during CS and US inputs, in the CA1 and the reverberation is crucial for the linking of CS and US in the encoding of delay-type cued-fear memory. Retrieval-responsive cells developed primarily during the reverberatory phase. Mutant mice lacking N-methyl-D-aspartate receptors (NRs) in CA3 showed a cued-fear memory impairment and a decrease in synchronized reverberatory activities between CS- and US-responsive CA1 cells. Optogenetic CA3 silencing at the reverberatory phase during learning impaired cued-fear memory. Our findings suggest that reverberation recruits future retrieval-responsive cells via synchrony between CS- and US-responsive cells. The hippocampus uses reverberatory activity to link CS and US inputs, and avoid crosstalk during sensory inputs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gareth Morris ◽  
Mona Heiland ◽  
Kai Lamottke ◽  
Haifeng Guan ◽  
Thomas D. M. Hill ◽  
...  

Drug-resistant epilepsy remains a significant clinical and societal burden, with one third of people with epilepsy continuing to experience seizures despite the availability of around 30 anti-seizure drugs (ASDs). Further, ASDs often have substantial adverse effects, including impacts on learning and memory. Therefore, it is important to develop new ASDs, which may be more potent or better tolerated. Here, we report the preliminary preclinical evaluation of BICS01, a synthetic product based on a natural compound, as a potential ASD. To model seizure-like activity in vitro, we prepared hippocampal slices from adult male Sprague Dawley rats, and elicited epileptiform bursting using high extracellular potassium. BICS01 (200 μM) rapidly and reversibly reduced the frequency of epileptiform bursting but did not change broad measures of network excitability or affect short-term synaptic facilitation. BICS01 was well tolerated following systemic injection at up to 1,000 mg/kg. However, we did not observe any protective effect of systemic BICS01 injection against acute seizures evoked by pentylenetetrazol. These results indicate that BICS01 is able to acutely reduce epileptiform activity in hippocampal networks. Further preclinical development studies to enhance pharmacokinetics and accumulation in the brain, as well as studies to understand the mechanism of action, are now required.


2021 ◽  
Vol 13 ◽  
Author(s):  
Qing Ye ◽  
Haifeng Chen ◽  
Renyuan Liu ◽  
Ruomeng Qin ◽  
Caimei Luo ◽  
...  

Both episodic memory and executive function are impaired in amnestic mild cognitive impairment (aMCI) subjects, but it is unclear if these impairments are independent or interactive. The present study aimed to explore the relationship between episodic memory deficits and executive function deficits, and the underlying functional mechanisms in aMCI subjects. Thirty-one aMCI subjects and 27 healthy subjects underwent neuropsychological tests and multimodal magnetic resonance imaging (MRI) scans. Hippocampal networks and medial prefrontal cortex (MPFC) networks were identified based on resting-sate functional MRI (fMRI) data. AMCI subjects displayed lower episodic memory scores and executive function scores than control subjects, and the episodic memory scores were positively correlated with the executive function scores in aMCI subjects. Brain network analyses showed an interaction between the hippocampal networks and the MPFC networks, and the interaction was significantly associated with the episodic memory scores and the executive function scores. Notably, aMCI subjects displayed higher functional connectivity (FC) of the right hippocampal network with the right prefrontal cortex than did control subjects, but this difference disappeared when controlling for the MPFC networks. Furthermore, the effects of the MPFC networks on the hippocampal networks were significantly associated with the episodic memory scores in aMCI subjects. The present findings suggested that the episodic memory deficits in aMCI subjects could be partially underpinned by the modulation of the MPFC networks on the hippocampal networks.


Development ◽  
2021 ◽  
Author(s):  
Sophie H. L. Austin ◽  
Rut Gabarró-Solanas ◽  
Piero Rigo ◽  
Oana Paun ◽  
Lachlan Harris ◽  
...  

Adult mouse hippocampal neural stem cells (NSCs) generate new neurons that integrate into existing hippocampal networks and modulate mood and memory. These NSCs are largely quiescent and are stimulated by niche signals to activate and produce neurons. Wnt/β-catenin signalling acts at different steps along the hippocampal neurogenic lineage, but whether it has a direct role in the regulation of NSCs remains unclear. Here we used Wnt/β-catenin reporters and transcriptomic data from in vivo and in vitro models to show that adult NSCs respond to Wnt/β-catenin signalling. Wnt/β-catenin stimulation instructed neuronal differentiation of NSCs in an active state and promoted the activation or differentiation of quiescent NSCs in a dose-dependent manner. However, we found that deletion of β-catenin in NSCs did not affect their activation or maintenance of their stem cell characteristics. Together, our results indicate that whilst NSCs do respond to Wnt/β-catenin stimulation in a dose-dependent and state-specific manner, Wnt/β-catenin signalling is not cell-autonomously required to maintain NSC homeostasis, which reconciles some of the contradictions in the literature as to the role of Wnt/β-catenin signalling in adult hippocampal NSCs.


2021 ◽  
Vol 151 ◽  
pp. 105748
Author(s):  
Chunlan Yang ◽  
Jiechuan Ren ◽  
Wan Li ◽  
Min Lu ◽  
Shuicai Wu ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1068-1073
Author(s):  
Daniel T. Pederick ◽  
Jan H. Lui ◽  
Ellen C. Gingrich ◽  
Chuanyun Xu ◽  
Mark J. Wagner ◽  
...  

Mammalian medial and lateral hippocampal networks preferentially process spatial- and object-related information, respectively. However, the mechanisms underlying the assembly of such parallel networks during development remain largely unknown. Our study shows that, in mice, complementary expression of cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in the medial and lateral hippocampal networks, respectively, guides the precise assembly of CA1-to-subiculum connections in both networks. In the medial network, Ten3-expressing (Ten3+) CA1 axons are repelled by target-derived Lphn2, revealing that Lphn2- and Ten3-mediated heterophilic repulsion and Ten3-mediated homophilic attraction cooperate to control precise target selection of CA1 axons. In the lateral network, Lphn2-expressing (Lphn2+) CA1 axons are confined to Lphn2+ targets via repulsion from Ten3+ targets. Our findings demonstrate that assembly of parallel hippocampal networks follows a “Ten3→Ten3, Lphn2→Lphn2” rule instructed by reciprocal repulsions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Eve Honoré ◽  
Abdessattar Khlaifia ◽  
Anthony Bosson ◽  
Jean-Claude Lacaille

A distinctive feature of the hippocampal structure is the diversity of inhibitory interneurons. These complex inhibitory interconnections largely contribute to the tight modulation of hippocampal circuitry, as well as to the formation and coordination of neuronal assemblies underlying learning and memory. Inhibitory interneurons provide more than a simple transitory inhibition of hippocampal principal cells (PCs). The synaptic plasticity of inhibitory neurons provides long-lasting changes in the hippocampal network and is a key component of memory formation. The dendrite targeting interneurons expressing the peptide somatostatin (SOM) are particularly interesting in this regard because they display unique long-lasting synaptic changes leading to metaplastic regulation of hippocampal networks. In this article, we examine the actions of the neuropeptide SOM on hippocampal cells, synaptic plasticity, learning, and memory. We address the different subtypes of hippocampal SOM interneurons. We describe the long-term synaptic plasticity that takes place at the excitatory synapses of SOM interneurons, its singular induction and expression mechanisms, as well as the consequences of these changes on the hippocampal network, learning, and memory. We also review evidence that astrocytes provide cell-specific dynamic regulation of inhibition of PC dendrites by SOM interneurons. Finally, we cover how, in mouse models of Alzheimer’s disease (AD), dysfunction of plasticity of SOM interneuron excitatory synapses may also contribute to cognitive impairments in brain disorders.


Sign in / Sign up

Export Citation Format

Share Document