Effect of long-term or short-term supplementation of high energy or high energy-protein diets on ovarian follicles and blood metabolites and hormones in ewes

2015 ◽  
Vol 132 ◽  
pp. 37-43 ◽  
Author(s):  
Javad Habibizad ◽  
Ahmad Riasi ◽  
Hamid Kohram ◽  
Hamid Reza Rahmani
1992 ◽  
Vol 6 ◽  
pp. 81-81
Author(s):  
David J. Davies ◽  
Molly F. Miller

Compared to their terrigenous counterparts, carbonate shell accumulations have until recently been relatively little studied to determine either descriptive or genetic classifications of shell bed types, the preservation potential of each type, or their relative ability to preserve community-level information. A partial classification of Paleozoic carbonate shell-rich soft sediment accumulations is proposed using sedimentation patterns in the Lebanon limestone of the Stones River Group. Paleoecological information preserved therein is then contrasted by shell bed type. The Lebanon represents typical Ordovician shallow to moderate subtidal carbonate shelf deposits in outcrops flanking the Nashville Dome and peritidal deposits in the Sequatchie Anticline of Eastern Tennessee; shell beds alternate with shell poor sediments (micrites, wackestones and diagenetically enhanced dolomites and clay-rich partings).None of the analyzed shell beds was strictly biological in origin; most are sedimentological although >10% are combined sedimentological/diagenetic. While the majority are single simple shell beds, >20% are amalgamated. All are thin (1 shell to 15 cm) stringers that pinch and swell showing poor lateral continuity (outcrop scale, tens to hundreds of meters) likely enhanced by burial dissolution. These shell beds differ greatly in fabric (packing/sorting), clast composition, taphonomic signature, and intensity of time averaging; thus community information retrieval is biased in predictable patterns. Virtually no shell beds show common shell dissolution or encrustation from long-term sediment surface exposure or hardground formation. Five major categories of accumulation are herein proposed using a DESCRIPTIVE, non-genetic terminology modified from previous works of DJD, as well as a Genetic interpretation for each. These are easily distinguished in the field and are also discriminated by Q-mode cluster analysis.Categories include, in decreasing frequency of occurrence: 1. SHELL GRAVELS; Storm/“event” beds: Sharp bases; poorly sorted coarse basal bioclasts and/or intraclasts, often with no preferred orientation; clasts fine upward to comminuted shell material and micrite. Horizontal platy brachiopods often cap the beds. High diversity and a wide range in shell alteration is represented, from whole unaltered brachiopods to minor abraded fragments, indicating extreme time averaging and poor resolution of short-term community dynamics. 2. COMMINUTED SHELLY LS; Current/ripple concentrations: Small tidal channel fill and discrete ripple trough accumulations are composed of cross-stratified bioclastic deposits with local concentrations of rip-ups. Beds are not graded; typically clasts are abraded, rounded and concordant with cross-beds. Intense time averaging and mixing of discrete communities is inferred due to continual reworking in these background deposits. 3. SHELL/CEMENT LS; Early cementation beds: Intense early diagenetic alteration is inferred due to red discoloration and rapid intergranular cementation; some beds show diagenetic micritic rinds. Beds may be brecciated and show deep burial stylolitization cutting bioclasts and cement. They may represent zones of preferred early cementation rather than a change in shell accumulation rate. Many shells from some beds show little postmortem alteration; these units may preserve much of the original community structure. 4. DENSE SHELL PAVEMENTS; Subtidal surficial pavements: Single layers of shells, commonly concave down, overlie mudstones/wackestones with no basal erosion. No obrution deposits were noted. Bioclasts are typically disarticulated and reoriented, but are not substantially abraded, broken, or dissolved. Diversity is low. Only minor temporal and lateral community mixing with small environmental fluctuation is indicated. 5. VERTICALLY IMBRICATE SHELLY LS; High energy beach zones: Platy whole and major fragments of brachiopods are deposited in low diversity, high angle imbricate beds. Less postmortem reworking and time averaging is evident compared to types 1 and 2.Thus, the most common (physically reworked) shell bed types show the most intense loss of short-term paleocommunity information. There are surprisingly few insitu community pavements or obligate long-term accumulations. This pattern differs from some described Ordovician carbonates, which may contain common community beds or hardgrounds/hiatal accumulations. This implies a relatively low rate of net sediment accumulation on a shallow, periodically wave swept shelf, and no major flooding surfaces or other indications of significant sea level change. Delineation of the sequence stratigraphic position of these carbonates is enhanced from this type of integrated community/biostratinomic analysis.


2000 ◽  
Vol 84 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ambroise Martin ◽  
Sylvie Normand ◽  
Monique Sothier ◽  
Jocelyne Peyrat ◽  
Corinne Louche-Pelissier ◽  
...  

Short-term (2 weeks) effects of the consumption of a high-energy (2920 kJ (700 kcal)) or low-energy (418 kJ (100 kcal)) breakfast on dietary patterns, blood variables and energy expenditure (indirect calorimetry) were compared in ten free-living healthy young men in a crossover study. During the high-energy breakfast, total energy intake was increased, the intake of protein and lipids was unchanged but the intake of carbohydrates was increased. Thus, 48 (SD 4) % OF ENERGY CAME FROM CARBOHYDRATES IN THE HIGH-ENERGY BREAKFAST COMPARED WITH 42 (sd 5) % in the low-energy breakfast. Excluding breakfast, the macronutrient composition of the diet remained identical in the two situations. After the high-energy breakfast, fasting serum triacylglycerol concentration was higher and HDL-cholesterol concentration was lower than after the low-energy breakfast. A high glycaemic response was observed in the morning after the high-energy breakfast period, while there was a peak of free fatty acids after the low-energy breakfast. The high-energy breakfast induced a strong inhibition of fat oxidation throughout the day. Although long-term adaptation to a high-energy breakfast cannot be excluded, the high-energy breakfast in this study did not appear to be favourable to health. Our results do not support the current advice to consume more energy at breakfast.


2017 ◽  
Vol 98 (5) ◽  
pp. 1187-1196 ◽  
Author(s):  
Arianna Cecchetti ◽  
Karen A. Stockin ◽  
Jonathan Gordon ◽  
José M.N. Azevedo

Short-term measures of behavioural responses of cetaceans to tourism operations have been used in many studies to interpret and understand potential long-term impacts of biological importance. The short-beaked common dolphin (Delphinus delphis) is the species most frequently observed in the Azores and constitutes an important component of the marine mammal tourism industry in this region. This study investigated the potential effects of tour boats on the behaviour of common dolphins off São Miguel, Azores, with particular focus on the changes in activity budget and the time required to resume activities after a tour boat interaction. Behavioural data were collected from land using a group focal-follow methodology. Markov chains were applied to analyse control and interaction sequences and to assess behavioural transition probabilities in both scenarios. In the presence of tour boats, dolphins significantly reduced the time spent foraging and increased the time engaged in other high energy activities. Dolphins also took significantly longer to resume feeding after an interaction occurred. The average bout length varied significantly between control and interaction scenarios, with foraging bouts being shorter during tour boats interactions. The results presented have management implications since feeding is a biologically critical activity. Disruption of foraging behaviour could lead to a decrease in energy intake for this population. With cetacean tourism likely to increase in the future, a precautionary approach to issuing new licences is advisable and any expansion would warrant an appropriate monitoring programme.


2021 ◽  
Vol 118 (5) ◽  
pp. e2004592118
Author(s):  
Barry A. Nickel ◽  
Justin P. Suraci ◽  
Anna C. Nisi ◽  
Christopher C. Wilmers

Energetic demands and fear of predators are considered primary factors shaping animal behavior, and both are likely drivers of movement decisions that ultimately determine the spatial ecology of wildlife. Yet energetic constraints on movement imposed by the physical landscape have only been considered separately from those imposed by risk avoidance, limiting our understanding of how short-term movement decisions scale up to affect long-term space use. Here, we integrate the costs of both physical terrain and predation risk into a common currency, energy, and then quantify their effects on the short-term movement and long-term spatial ecology of a large carnivore living in a human-dominated landscape. Using high-resolution GPS and accelerometer data from collared pumas (Puma concolor), we calculated the short-term (i.e., 5-min) energetic costs of navigating both rugged physical terrain and a landscape of risk from humans (major sources of both mortality and fear for our study population). Both the physical and risk landscapes affected puma short-term movement costs, with risk having a relatively greater impact by inducing high-energy but low-efficiency movement behavior. The cumulative effects of short-term movement costs led to reductions of 29% to 68% in daily travel distances and total home range area. For male pumas, long-term patterns of space use were predominantly driven by the energetic costs of human-induced risk. This work demonstrates that, along with physical terrain, predation risk plays a primary role in shaping an animal’s “energy landscape” and suggests that fear of humans may be a major factor affecting wildlife movements worldwide.


2012 ◽  
Vol 37 (3) ◽  
pp. 97-109 ◽  
Author(s):  
Xiumin Wang ◽  
Shaoqing Ni ◽  
Yanping Xu ◽  
Li Liang ◽  
Lizhong Du ◽  
...  

2018 ◽  
Vol 184 (2) ◽  
pp. 198-200
Author(s):  
Kh Haddad ◽  
O Anjak ◽  
B Yousef ◽  
M Ammar

Abstract Monitoring of high-energy photon dose in radiation therapy is crucial for radiation protection, as well as to estimate the radiation effects in the operating microelectronic devices. The aim of this work was to investigate the possibility of using the photoactivation technique to monitor the high-energy photon fluence in the Varian 21EX 23MV CLINAC. The 52Cr(γ,n)51Cr and 66Zn(γ,n)65Zn reactions were used. It was found that 51Cr and 65Zn can be used successfully to monitor the fluence for short term (80 days) and long term (110 days), respectively.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
George Stojan ◽  
Flavia Giammarino ◽  
Michelle Petri

Abstract Background To examine the influence of solar cycle and geomagnetic effects on SLE disease activity. Methods The data used for the analysis consisted of 327 observations of 27-day Physician Global Assessment (PGA) averages from January 1996 to February 2020. The considered geomagnetic indices were the AP index (a daily average level for geomagnetic activity), sunspot number index R (measure of the area of solar surface covered by spots), the F10.7 index (measure of the noise level generated by the sun at a wavelength of 10.7 cm at the earth’s orbit), the AU index (upper auroral electrojet index), and high energy (> 60 Mev) proton flux events. Geomagnetic data were obtained from the Goddard Space Flight Center Space Physics Data Facility. A time series decomposition of the PGA averages was performed as the first step. The linear relationships between the PGA and the geomagnetic indices were examined using parametric statistical methods such as Pearson correlation and linear regression, while the nonlinear relationships were examined using nonparametric statistical methods such as Spearman’s rho and Kernel regression. Results After time series deconstruction of PGA averages, the seasonality explained a significant fraction of the variance of the time series (R2 = 38.7%) with one cycle completed every 16 years. The analysis of the short-term (27-day) relationships indicated that increases in geomagnetic activity Ap index (p < 0.1) and high energy proton fluxes (> 60 Mev) (p < 0.05) were associated with decreases in SLE disease activity, while increases in the sunspot number index R anticipated decreases in the SLE disease activity expressed as PGA (p < 0.05). The short-term correlations became statistically insignificant after adjusting for multiple comparisons using Bonferroni correction. The analysis of the long-term (297 day) relationships indicated stronger negative association between changes in the PGA and changes in the sunspot number index R (p < 0.01), AP index (p < 0.01), and the F10.7 index (p < 0.01). The long-term correlations remained statistically significant after adjusting for multiple comparisons using Bonferroni correction. Conclusion The seasonality of the PGA averages (one cycle every 16 years) explains a significant fraction of the variance of the time series. Geomagnetic disturbances, including the level of geomagnetic activity, sunspot numbers, and high proton flux events may influence SLE disease activity. Studies of other geographic locales are needed to validate these findings.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1102 ◽  
Author(s):  
Yu ◽  
Cho ◽  
Park

In order to resolve the issue of tremendous energy consumption in conventional artificial intelligence, hardware-based neuromorphic system is being actively studied. Although various synaptic devices for the system have been proposed, they have shown limits in terms of endurance, reliability, energy efficiency, and Si processing compatibility. In this work, we design a synaptic transistor with short-term and long-term plasticity, high density, high reliability and energy efficiency, and Si processing compatibility. The synaptic characteristics of the device are closely examined and validated through technology computer-aided design (TCAD) device simulation. Consequently, full synaptic functions with high energy efficiency have been realized.


2012 ◽  
Vol 08 ◽  
pp. 404-407 ◽  
Author(s):  
◽  
STEFANO VERCELLONE

The blazar 3C 454.3 has become the most active and brightest γ-ray source of the sky, earning the nickname of Crazy Diamond. The short-term variability in the γ-ray energy band and the extremely high peak fluxes reached during intense flaring episodes make 3C 454.3 one of the best targets to investigate the blazar jet properties. We will review four years of observational properties of this remarkable source, discussing both short- and long-term multi-wavelength campaigns, with particular emphasis on the recent flaring episode which occurred on 2010 November 20, when 3C 454.3 reached on a daily time-scale a gamma-ray flux (E > 100 MeV) higher than 6 × 10-5 photons cm-2 s-1, about six times the flux of the brightest γ-ray steady source, the Vela Pulsar.


Endocrinology ◽  
1986 ◽  
Vol 118 (4) ◽  
pp. 1379-1386 ◽  
Author(s):  
K. BOGOVICH ◽  
L. M. SCALES ◽  
E. HIGGINBOTTOM ◽  
L. L. EWING ◽  
J. S. RICHARDS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document