Nuclear magnetic resonance screening of changes in fatty acid and cholesterol content of ovine milk induced by ensiled olive cake inclusion in Chios sheep diets

2019 ◽  
Vol 177 ◽  
pp. 111-116 ◽  
Author(s):  
Simoni Symeou ◽  
Constantinos G. Tsiafoulis ◽  
Ioannis P. Gerothanassis ◽  
Despoina Miltiadou ◽  
Ouranios Tzamaloukas
2006 ◽  
Vol 89 (4) ◽  
pp. 1071-1076 ◽  
Author(s):  
Giovanna Vlahov

Abstract Linear models were selected from a large data set acquired for Italian olive oil samples by quantitative 13C nuclear magnetic resonance (NMR) spectroscopy with distortionless enhancement by polarization transfer (DEPT). The models were used to determine the composition of the 2 fatty acid pools esterifying the 1,3- and 2-positions of triacylglycerols. The linear models selected proved that the 1,3- and 2-distribution of saturated, oleate, and linoleate chains in olive oil triacylglycerols deviated from the random distribution pattern to an extent that depended on the concentration of the fatty acid in the whole triacylglycerol. To calculate the fatty acid composition of the 1,3- and 2-positions of olive oil triacylglycerols, the equations of the selected linear models were applied to the fatty acid percentages determined by gas chromatography. These data were compared with the values predicted by the computer method (used to determine the theoretical amounts of triacylglycerols), which is based on the 1,3-random-2-random theory of the fatty acid distribution in triacylglycerols. The biggest differences were found in the linoleate chain, which is the chain that deviated the most from a random distribution pattern. The results confirmed that the 1,3-random-2-random distribution theory provides an approximate method for determining the structure of triacylglycerols; however, the linear models calculated by the direct method that applies 13C NMR spectroscopy represent a more precise measurement of the composition of the 2 fatty acid pools esterifying the 1,3- and 2-positions of triacylglycerols.


Sign in / Sign up

Export Citation Format

Share Document