scholarly journals Analysing and evaluating a dual-sensor autofocusing method for measuring the position of patterns of small holes on complex curved surfaces

2014 ◽  
Vol 210 ◽  
pp. 86-94
Author(s):  
Xiaomei Chen ◽  
Andrew Longstaff ◽  
Simon Fletcher ◽  
Alan Myers
2014 ◽  
Vol 53 (10) ◽  
pp. 2246
Author(s):  
Xiaomei Chen ◽  
Andrew Longstaff ◽  
Simon Fletcher ◽  
Alan Myers

Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Author(s):  
Evan Weststrate ◽  
◽  
Michael S. Squillante ◽  
Sergey Chekanov

2020 ◽  
Author(s):  
Ian Mallov ◽  
Fiona Jeeva ◽  
Chris Caputo

Food is often wasted due to real or perceived concerns about preservation and shelf life. Thus, precise, accurate and consumer-friendly methods of indicating whether food is safe for consumers are drawing great interest. The colorimetric sensing of biogenic amines released as food degrades is a potential way of determining the quality of the food. Herein, we report the use of genipin, a naturally occurring iridoid, as a dual colorimetric sensor for both oxygen and biogenic amines. Immobilization of genipin in edible calcium alginate beads demonstrates that it is a capable sensor for amine vapors and can be immobilized in a non-toxic, food-friendly matrix.


Sign in / Sign up

Export Citation Format

Share Document