colorimetric sensing
Recently Published Documents





Ying Liu ◽  
Jianghong Yan ◽  
Yu Huang ◽  
Zhiheng Sun ◽  
Huijing Zhang ◽  

Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In the present study, we successfully prepared single-atom iron oxide-nanoparticle (Fe-NP)-modified nanodiamonds (NDs) named Fe-NDs via a one-pot in situ reduction method. This nanozyme functionally mimics two major enzymes, namely, peroxidase and oxidase. Accordingly, a colorimetric sensing platform was designed to detect hydrogen peroxide (H2O2) and GSH. Owing to their peroxidase-like activity, Fe-NDs can oxidize colorless 3,3′,5,5′-tetramethylbenzidine (TMB) into blue with sufficient linearity at H2O2 concentrations of 1–60 μM and with a detection limit of 0.3 μM. Furthermore, using different concentrations of GSH, oxidized TMB can be reduced to TMB, and the color change from blue to nearly colorless can be observed by the naked eye (linear range, 1–25 μM; detection limit, 0.072 μM). The established colorimetric method based on oxidase-like activity can be successfully used to detect reduced GSH in tablets and injections with good selectivity and high sensitivity. The results of this study exhibited reliable consistency with the detection results obtained using high-performance liquid chromatography (HPLC). Therefore, the Fe-NDs colorimetric sensor designed in this study offers adequate accuracy and sensitivity.

Umar Nishan ◽  
Hameed Ullah Khan ◽  
Abdur Rahim ◽  
Muhammad Asad ◽  
Mughal Qayum ◽  

2021 ◽  
Dan Han ◽  
Hong Yang ◽  
Zhixin Zhou ◽  
Kaiqing Wu ◽  
Jin Ma ◽  

Colorimetric sensing has been widely used for centuries across diverse fields, thanks to easy operation with no electricity and uncompromised high sensitivity. However, the limited number of chromogenic systems hampers its broader applications. Here, we reported that carbon nitride (CN), the raw materials-abundant and cheap semiconductors with photoelectron storage capability, can be developed as a new chromogenic platform for colorimetric sensing. Beyond most photoelectron storage materials that only demonstrated blue color in the excited state, CN could also exhibit brown color by terminal group functionalization. The experiments and DFT theoretical calculation revealed the origin of the unusual two types of color switches. Cyano and carbonyl terminal groups in CN elongated the centroids distance of electron/hole and stabilized the excited states through a physical and electrochemical pathway, respectively; meanwhile, the counter cations strengthened these processes. As a result, the CN-derived colorimetric O2 sensors demonstrated excellent reversibility in recycling hundreds of times for detection, and exhibited adaptable limit of detection and linear detection range, which was superior to commercial O2 sensors, especially for complex systems with broad variable concentrations.

2021 ◽  
pp. 131241
Shixuan Su ◽  
Shanshan Li ◽  
Jing Hu ◽  
Ting Yu ◽  
Lingchen Tao ◽  

2021 ◽  
Gabriel P. Lachance ◽  
Guillaume Soulard ◽  
Loic Bouffard ◽  
Elodie Boisselier ◽  
Mounir Boukadoum ◽  

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1423
Zhen Gu ◽  
Jing-Jing Luo ◽  
Le-Wei Ding ◽  
Bing-Yong Yan ◽  
Jia-Le Zhou ◽  

Digital microfluidic (DMF) has been a unique tool for manipulating micro-droplets with high flexibility and accuracy. To extend the application of DMF for automatic and in-site detection, it is promising to introduce colorimetric sensing based on gold nanoparticles (AuNPs), which have advantages including high sensitivity, label-free, biocompatibility, and easy surface modification. However, there is still a lack of studies for investigating the movement and stability of AuNPs for in-site detection on the electrowetting-based digital microfluidics. Herein, to demonstrate the ability of DMF for colorimetric sensing with AuNPs, we investigated the electrowetting property of the AuNPs droplets on the hydrophobic interface of the DMF chip and examined the stability of the AuNPs on DMF as well as the influence of evaporation to the colorimetric sensing. As a result, we found that the electrowetting of AuNPs fits to a modified Young–Lippmann equation, which suggests that a higher voltage is required to actuate AuNPs droplets compared with actuating water droplets. Moreover, the stability of AuNPs was maintained during the processing of electrowetting. We also proved that the evaporation of droplets has a limited influence on the detections that last several minutes. Finally, a model experiment for the detection of Hg2+ was carried out with similar results to the detections in bulk solution. The proposed method can be further extended to a wide range of AuNPs-based detection for label-free, automatic, and low-cost detection of small molecules, biomarkers, and metal ions.

Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 319
Li Zhang ◽  
Yimeng Zhu ◽  
Feiming Li ◽  
Linchun Zhang ◽  
Longjie You ◽  

Using the ionic salt characteristics of CsPbBr3 perovskite nanocrystals (CsPbBr3 NCs), the fluorescence wavelength of CsPbBr3−xIx NCs could be changed by the halogen exchange reaction between CsPbBr3 NCs and oleylammonium iodide (OLAM-I). Under the excitation of a 365 nm UV lamp and the increase of OLAM-I concentration, the content of iodine in CsPbBr3−xIx NCs increased, and the fluorescence emission wavelength showed a redshift from 511.6 nm to 593.4 nm, resulting in the fluorescence color change of CsPbBr3 NCs from green to orange-red. Since OLAM-I is a mild reducing agent and easily oxidized by benzoyl peroxide (BPO), a novel colorimetric sensing approach for BPO based on the fluorescence wavelength shift was established in this study. The linear relationship between the different wavelength shifts (Δλ) and the concentration of BPO (CBPO) is found to be in the range of 0 to 120 μmol L−1. The coefficient of alteration (R2) and the detection limit are 0.9933 and 0.13 μmol L−1 BPO, respectively. With this approach, the determination procedure of BPO in flour and noodle samples can be achieved in only a few minutes and exhibit high sensitivity and selectivity.

Sign in / Sign up

Export Citation Format

Share Document