Silica-based optical fibres with refractive index profiles tailored in a region of 1.46–1.62 for fibre-optic chemical detection

2005 ◽  
Vol 107 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Ivan Kasik ◽  
Vlastimil Matejec ◽  
Miroslav Chomat ◽  
Milos Hayer ◽  
Jan Mrazek ◽  
...  
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 599
Author(s):  
Zuzana Šaršounová ◽  
Vít Plaček ◽  
Václav Prajzler ◽  
Kateřina Masopustová ◽  
Petr Havránek

Fibre optic cables are widely used as communication cables in Instrumentation and Control (I&C) systems. In the case of nuclear power plants (NPPs), using optic cables in mild environments outside of containment areas are very common. However, at present, there is a need for fibre optic cables to be used in containment areas, i.e., with radiation. An optical fibre consists of a highly transparent core that possesses a higher refractive index than the surrounding transparent cladding, which possesses a lower refractive index. Most optical fibres are manufactured from glass (silica with required dopants) which is created at high temperatures from the reaction between gasses. The glass used in optical fibres is sensitive; it becomes dark during exposure to radiation, which compromises the optic functions. That is why there has been a slow infiltration of optic cable in NPP containment areas. Radiation resistant optic fibres have been developed. Although these fibres are called “radiation resistant,” they go through a darkening process (absorbance increase) as well, but not as quickly. Immediately after the irradiation has stopped, a recovery process starts in the glass structure. During this period, optical losses of the glass improve, but not to the original level as before the irradiation. During the testing of optic cables for the installation in nuclear power plant containment areas, we observed an unusual recovery process. In the beginning, a healing effect was observed. However, after a few days of recovery, the healing process stopped, and the trend changed again as a worsening of the optical properties was observed. This paper describes experiments which explain the reasons for such an unexpected behaviour.


1979 ◽  
Vol 11 (6) ◽  
pp. 507-516 ◽  
Author(s):  
A. E. Karbowiak ◽  
D. H. Irving

2002 ◽  
Vol 186 (1-4) ◽  
pp. 583-587 ◽  
Author(s):  
P.E. Dyer ◽  
A.-M. Johnson ◽  
H.V. Snelling ◽  
C.D. Walton

2022 ◽  
Vol 52 (1) ◽  
pp. 94-99
Author(s):  
S K Evstropiev ◽  
V V Demidov ◽  
D V Bulyga ◽  
R V Sadovnichii ◽  
G A Pchelkin ◽  
...  

Abstract We report the development of a group of luminescent fibre-optic temperature sensors that use Ce3+-, Dy3+-, and Yb3+-doped yttrium aluminium garnet (YAG) nanophosphors as thermosensitive materials. The nanophosphors have been prepared in the form of powders with a crystallite size from 19 to 27 nm by a polymer ? salt method and exhibit bright luminescence at 550 (YAG : Ce3+), 400, 480 (YAG : Dy3+), and 1030 nm (YAG : Yb3+). The sensor design includes a silica capillary, partially filled with a nanophosphor, and two large-aperture multimode optical fibres located in the capillary, which deliver excitation light and receive and transmit the photoluminescence signal. The photoluminescence signal amplitude of all the sensors decreases exponentially with increasing temperature, pointing to characteristic thermal quenching of photoluminescence and adequate operation of the devices up to 500 °C. The highest temperature sensitivity among the fibre-optic sensors is offered by the YAG : Ce3+ nanophosphor-based devices.


2013 ◽  
Vol 210 (10) ◽  
pp. 2100-2105 ◽  
Author(s):  
Mateusz Śmietana ◽  
Mariusz Dudek ◽  
Marcin Koba ◽  
Bartosz Michalak

Author(s):  
Erik Agrell ◽  
Alex Alvarado ◽  
Frank R. Kschischang

Recent decades have witnessed steady improvements in our ability to harness the information-carrying capability of optical fibres. Will this process continue, or will progress eventually stall? Information theory predicts that all channels have a limited capacity depending on the available transmission resources, and thus it is inevitable that the pace of improvements will slow. However, information theory also provides insights into how transmission resources should, in principle, best be exploited, and thus may serve as a guide for where to look for better ways to squeeze more out of a precious resource. This tutorial paper reviews the basic concepts of information theory and their application in fibre-optic communications.


2006 ◽  
Vol 17 (5) ◽  
pp. 1134-1139 ◽  
Author(s):  
J M Trudeau ◽  
P Paradis ◽  
C Paré ◽  
C Meneghini ◽  
A Cournoyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document