Plastic antibodies as chemical sensor material for atrazine detection

2011 ◽  
Vol 160 (1) ◽  
pp. 227-233 ◽  
Author(s):  
Sadaf Yaqub ◽  
Usman Latif ◽  
Franz L. Dickert
2014 ◽  
Vol 896 ◽  
pp. 292-295 ◽  
Author(s):  
Kris Tri Basuki ◽  
Deni Swantomo ◽  
Sigit ◽  
Kartini Megasari

Smart hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest as chemical sensor material and controlled release system. The pH stimulus responsive hydrogels were synthesized by gamma-irradiation graft copolymerization of chitosan-acrylamide. In this research the influence of deacetylation process on the hydrogels characterization were investigated by measuring grafting efficiency, gel fraction, swelling degree, and crosslink density. Evidence of grafting was confirmed by FTIR spectroscopy. X-ray diffraction showed reduction in the crystallinity of chitosan with different deacetylation process also after the graft copolymerization reaction. The results showed that decreasing acetyl group of chitosan increase the grafting efficiency, gel fraction and swelling degree. While crystallinity decreased. The hydrogels indicated pH-dependent swelling behaviour.


2011 ◽  
Vol 47 (22) ◽  
pp. 6350 ◽  
Author(s):  
Zaixing Jiang ◽  
Jiajun Wang ◽  
Linghui Meng ◽  
Yudong Huang ◽  
Li Liu

2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


2021 ◽  
Vol 22 (11) ◽  
pp. 6053
Author(s):  
Marziyeh Nazari ◽  
Abbas Amini ◽  
Nathan T. Eden ◽  
Mikel C. Duke ◽  
Chun Cheng ◽  
...  

Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO3H group (SO3H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb2+) in water at 25.2, 43.5 and 64.0 ppm levels. The SO3H-UiO-66(Zr) system provides a Fabry–Perot sensor by which the lead ions are detected rapidly (milliseconds) at 25.2 ppm aqueous solution reflecting in the wavelength shifts in interference spectrum. The proposed removal mechanism is based on the adsorption of [Pb(OH2)6]2+ in water on SO3H-UiO-66(Zr) due to a strong affinity between functionalized MOF and lead. This is the first work that advances a multi-purpose optical fiber-coated functional MOF as an on-site remote chemical sensor for rapid detection of lead cations at extremely low concentrations in an aqueous system.


Sign in / Sign up

Export Citation Format

Share Document