Enhanced anti-interference on electrochemical detection of arsenite with nanoporous gold in mild condition

2016 ◽  
Vol 234 ◽  
pp. 404-411 ◽  
Author(s):  
Meng Yang ◽  
Xing Chen ◽  
Jin-Huai Liu ◽  
Xing-Jiu Huang
Talanta ◽  
2021 ◽  
Vol 226 ◽  
pp. 122130
Author(s):  
Gilberto J. Silva Junior ◽  
Jéssica Soares Guimarães Selva ◽  
Anandhakumar Sukeri ◽  
Josué M. Gonçalves ◽  
Matias Regiart ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Dongxiao Wen ◽  
Qianrui Liu ◽  
Ying Cui ◽  
Huaixia Yang ◽  
Jinming Kong

A novel nanocomposite of nanoporous gold nanoparticles (np-AuNPs) functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) was prepared; assembled carboxyl groups on gold nanoporous nanoparticles surface were combined with TEMPO by the “bridge” of carboxylate-zirconium-carboxylate chemistry. SEM images and UV-Vis spectroscopies of np-AuNPs indicated that a safe, sustainable, and simplified one-step dealloying synthesis approach is successful. The TEMPO-np-AuNPs exhibited a good performance for the electrochemical detection of H2O2 due to its higher number of electrochemical activity sites and surface area of 7.49 m2g-1 for load bigger amount of TEMPO radicals. The TEMPO-functionalized np-AuNPs have a broad pH range and shorter response time for H2O2 catalysis verified by the response of amperometric signal under different pH and time interval. A wide linear range with a detection limit of 7.8 × 10-7 M and a higher sensitivity of 110.403 μA mM-1cm-2 were obtained for detecting H2O2 at optimal conditions.


2020 ◽  
Vol 167 (8) ◽  
pp. 086504
Author(s):  
An Zhang ◽  
Zhipeng Yang ◽  
Yuanyuan Chen ◽  
Peter Schützendübe ◽  
Yuan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document