indium tin oxide electrode
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 31)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 412 ◽  
pp. 128717
Author(s):  
So Jeong Park ◽  
Min Hee Joo ◽  
Sung-Min Hong ◽  
Choong Kyun Rhee ◽  
Jun-Gill Kang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Breazu ◽  
M. Socol ◽  
N. Preda ◽  
O. Rasoga ◽  
A. Costas ◽  
...  

AbstractEnvironmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modification is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the influence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin films obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and flat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modification by nano-patterning affects both the optical (transmission and emission) properties by multiple reflections on the walls of nanostructures and the electrical properties by the effect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin films deposited on nanostructured conductive electrode in green optoelectronic devices.


The Analyst ◽  
2021 ◽  
Author(s):  
Shiying Zhou ◽  
Xianfeng Wang ◽  
Liuyi Jiang ◽  
Human Sun ◽  
Danqun Huo ◽  
...  

Two different electrochemical sensors (Hemin-G4/Au/GCE and Hemin-G4/Au/ITO) were developed and applied to explore the electrocatalytic capacity of H2O2 reduction. Due to the excellent catalytic activity of Hemin-G4 and the high...


Sign in / Sign up

Export Citation Format

Share Document