Synthesis of naphthalimide-based indicator dyes with a 2-hydroxyethylsulfonyl function for covalent immobilisation to cellulose

2018 ◽  
Vol 275 ◽  
pp. 439-445 ◽  
Author(s):  
Gerhard J. Mohr
Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


2011 ◽  
Vol 161 (3-4) ◽  
pp. 285-292 ◽  
Author(s):  
Carol Crean (neé Lynam) ◽  
Emer Lahiff ◽  
Niamh Gilmartin ◽  
Dermot Diamond ◽  
Richard O’Kennedy

Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 279-288
Author(s):  
J. Bohrmann ◽  
H. Gutzeit

Charged cell constituents in polytrophic insect follicles are thought to be transported in the nurse cell-oocyte syncytium by way of electrophoresis. This concept, proposed by Woodruff & Telfer (1980) was based on electrophysiological data and microinjection of heterologous proteins using Hyalophora follicles. By microinjecting fluorescently labelled acidic and basic proteins into the nurse cells or oocyte of vitellogenic Drosophila follicles, we failed to obtain evidence for charge-dependent migration of these molecules. We have also analyzed the proteins of nurse cells and oocyte on isoelectric focusing gels, by means of two-dimensional gel electrophoresis, and by ion exchange chromatography to see if basic or acidic proteins accumulate in vivo in nurse cells and oocyte, respectively. For the bulk of the follicular proteins we found no accumulation. Further evidence against an electrophoretic transport system in Drosophila was obtained by estimating the intracellular pH from the colour of indicator dyes microinjected into the follicles; the results indicate that the pH in the nurse cell cytoplasm is lower than that in the ooplasm. According to the model developed for Hyalophora, electrophoretic transport would be favoured by high pH in the nurse cell cytoplasm.


2000 ◽  
Vol 115 (6) ◽  
pp. 735-748 ◽  
Author(s):  
Richard Payne ◽  
James Demas

Light-induced release of Ca2+ from stores in Limulus ventral photoreceptors was studied using confocal fluorescence microscopy and the Ca2+ indicator dyes, Oregon green-5N and fluo-4. Fluorescence was collected from a spot within 4 μm of the microvillar membrane. A dual-flash protocol was used to reconstruct transient elevations of intracellular free calcium ion concentration (Cai) after flashes delivering between 10 and 5 × 105 effective photons. Peak Cai increased with flash intensity to 138 ± 76 μM after flashes delivering ∼104 effective photons, while the latent period of the elevation of Cai fell from ∼140 to 21 ms. The onset of the light-induced elevation of Cai was always highly correlated with that of the receptor potential. The time for Cai to exceed 2 μM was approximately equal to that for the receptor potential to exceed 8 mV (mean difference; 2.2 ± 6.4 ms). Cai was also measured during steps of light delivering ∼105 effective photons/s to photoreceptors that had been bleached with hydroxylamine so as to reduce their quantum efficiency. Elevations of Cai were detected at the earliest times of the electrical response to the steps of light, when a significant receptor potential had yet to develop. Successive responses exhibited stochastic variation in their latency of up to 20 ms, but the elevation of Cai and the receptor potential still rose at approximately the same time, indicating a shared process generating the latent period. Light-induced elevations of Cai resulted from Ca2+ release from intracellular stores, being abolished by cyclopiazonic acid (CPA), an inhibitor of endoplasmic reticulum Ca2+ pumps, but not by removal of extracellular Ca2+ ions. CPA also greatly diminished and slowed the receptor potential elicited by dim flashes. The results demonstrate a rapid release of Ca2+ ions that appears necessary for a highly amplified electrical response to dim flashes.


2020 ◽  
Author(s):  
Katharina Seelmann ◽  
Martha Gledhill ◽  
Steffen Aßmann ◽  
Arne Körtzinger

Abstract. Due to its accurate and precise character, the spectrophotometric pH detection is a common technique applied in measurement methods for carbonate system parameters. However, impurities in the used pH indicator dyes can influence the measurements quality. The work described here focuses on influences from impurities in the pH indicator dye bromocresol green (BCG) on spectrophotometric seawater total alkalinity (AT) measurements. First, a high-performance liquid chromatography (HPLC) purification method for BCG was developed. A subsequent analysis of BCG dye from four different vendors with this method revealed different types and quantities of impurities. After successful purification, AT measurements with purified and unpurified BCG were carried out using the novel autonomous analyzer CONTROS HydroFIA® TA. Long-term measurements in the laboratory revealed a direct influence of impurity types and quantities on the drift behavior of the analyzer. The purer the BCG, the smaller was the drift increment per measurement. Furthermore, we could show that a certain impurity in some indicator dyes changed the drift pattern from linear to non-linear, which can impair the AT measurements during a long-term deployment of the system. Laboratory performance characterization experiments revealed no improvement of the measurement quality (precision and accuracy) by using purified BCG as long as the impurities of the unpurified dye do not exceed a quantity of 2 % (relationship of peak areas in the chromatogram). However, BCG with impurity quantities higher than 6 % provided AT values, which failed fundamental quality requirements. Concluding, to gain optimal AT measurements, an indicator purification is not necessarily required as long as the purchased dye has a purity level of at least 98 %.


Sign in / Sign up

Export Citation Format

Share Document