Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect

2014 ◽  
Vol 76 ◽  
pp. 12-21 ◽  
Author(s):  
Weiwei Lu ◽  
Weixin Ding ◽  
Junhua Zhang ◽  
Yi Li ◽  
Jiafa Luo ◽  
...  
Soil Research ◽  
1988 ◽  
Vol 26 (3) ◽  
pp. 549 ◽  
Author(s):  
KY Chan ◽  
JA Mead

The infiltration behaviour and physical properties of a hardsetting sandy loam soil at Cowra, N.S.W., following 2 years of different tillage treatments are reported. Soil that had not been cultivated for 25 years was also investigated at an adjacent pasture site. Infiltration of simulated rainfall at the end of the wheat-growing season gave moisture profiles that were quite different for cultivated, direct drilled and pasture soils. The moisture profile for the cultivated soil suggested the presence of an impeded layer which retarded the movement of infiltrated rain to the subsoil. Porosity measurements confirmed the presence of a layer with significantly fewer macropores (> 300 �m diameter) at the 50-100 mm depth in the cultivated soil, when compared with the direct drilled soil. The old pasture soil had significantly higher porosity (> 300 �m diameter) in the top 100 mm. Aggregate stabilities and organic carbon contents were measured in narrow increments to 150 mm depth for the three different soils, and revealed that a surface 25 mm layer of high organic carbon and highly stable macro-aggregates was present in the pasture and direct drilled soils but absent in the cultivated soil. The unstable surface layer in the conventionally cultivated soil was a consequence of the mixing and inverting action of cultivation and was not due to a net loss of organic carbon from the profile. The organic carbon content of the pasture soil was not significantly different from the direct drilled soil below 50 mm; however, it was significantly lower than the conventionally cultivated soil between 50 and 150 mm depth. These results indicate a need to adopt tillage practices that can preserve the top 25 mm layer of such fragile soils.


2018 ◽  
Vol 29 (11) ◽  
pp. 3985-3994 ◽  
Author(s):  
Yuxue Liu ◽  
Ying Chen ◽  
Yuying Wang ◽  
Haohao Lu ◽  
Lili He ◽  
...  

Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 636
Author(s):  
J. M. Xue ◽  
P. W. Clinton ◽  
R. Sands ◽  
T. W. Payn ◽  
M. F. Skinner

Biuret (C2H5N3O2) priming effect on mineralisation of native soil N has not been precisely quantified in previous studies, although it is a potential microbial activity regulator and slow-release N fertiliser. Following application of biuret at concentrations of 0 (B0) and 100 (B100) mg/kg (oven-dried) soil, we measured the dynamics of biuret-derived 15N in soil N pools, soil C mineralisation, and microbial biomass C in a sandy loam and a silt loam during a 112-day-long incubation to investigate the fate of biuret 15N and its effect on net mineralisation of native soil N. Biuret was decomposed faster in the sandy loam soil than the silt loam soil. In the sandy loam soil, the stabilised N pool was a strong sink for the biuret-derived 15N and accumulated about half of the applied 15N at the end of incubation. In the silt loam soil, 68% of the 15N applied was recovered in the NO3−-N pool and the stabilised N pool accumulated only about 25% of the applied 15N at the end of incubation. Biuret addition increased the turnover rate constant of soil organic matter and caused a real priming effect on net mineralisation of native soil N in both soils. The additional mineralisation of native soil N was 20.1 mg/kg (equivalent to 27.3 kg N/ha) in the sandy loam soil and 20.5 mg/kg (equivalent to 57.3 kg N/ha) in the silt loam soil. Biuret priming effect was related to the acceleration of soil organic matter decomposition by increased microbial activity at an early stage and the death/decay of microbes at a later stage of incubation. The native soil N released through the priming effect was partially from soil non-biomass organic matter and partially from soil microbial biomass.


Sign in / Sign up

Export Citation Format

Share Document