Seismic analysis of soil-structure system of nuclear power plant on non-rock site via shaking table test

2020 ◽  
Vol 136 ◽  
pp. 106209
Author(s):  
Wang Xiaohui ◽  
Li Xiaojun ◽  
Liu Aiwen ◽  
He Qiumei ◽  
Hou Chunlin
2013 ◽  
Vol 479-480 ◽  
pp. 1045-1050
Author(s):  
Wei Ting Lin ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

This study is aim to evaluate the seismic response of the motor control center cabinet in a nuclear power plant using shaking table test and 3D finite element analysis method. Three typical types of motor control center cabinet were used in this study and frequency curves and spectral response acceleration were used as the indices of the dynamic response. The results indicated that the resonance frequency for X and Y direction is about 12 Hz and 15 Hz, respectively, which is verified by the numerical results. The frequencies curves and spectral response acceleration generated by numerical and experimental method were similar and well fitting. Although the numerical method obtained the conservative results, the model accurately represents the dynamic characteristics of the actual motor control center cabinet for seismic verification.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ling-Yun Peng ◽  
Ying-Jie Kang ◽  
Zhen-Yun Tang ◽  
Hua-Ting Chen

Under earthquake action, the reinforced concrete structure at the edge of the CAP1400 nuclear power plant foundation slab will be uplifted. In order to determine the seismic performance of this structure, a 1 : 12 scale shaking table test model was fabricated using gypsum as simulated concrete in order to meet scaled design requirements. By testing this model, the seismic response of the structure with consideration of the foundation uplift was obtained. Numerical analyses of the test model and the prototype structure were conducted to gain a better understanding of the structural seismic performance. When subjected to earthquakes, the foundation slab of the nuclear power plant experiences a slight degree of uplift but remains in the elastic stage due to the weight of the structure above, which provides an antioverturning moment. The numerical simulation is in general agreement with the test results, suggesting numerical simulations could be accurately employed in place of physical tests. The superstructure displacement response was found not to affect the safety of adjacent structures, and the seismic performance of the structure was shown to meet the relevant design requirements, demonstrating that this approach to modelling can serve as a design basis for the CAP1400 nuclear power demonstration project.


2013 ◽  
Vol 284-287 ◽  
pp. 1421-1425
Author(s):  
Wei Ting Lin ◽  
Meng Hsiu Hsieh ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

Following the nuclear power plant accident in Fukushima Japan, seismic capacity evaluation has become a crucial issue in combination building safety. Condensate storage tanks are designed to supplies water to the condensate transfer pumps, the control rod drive hydraulic system pumps, and the condenser makeup. A separate connection to the condensate storage tank is used to supply water for the high pressure coolant injection system, reactor core isolation cooling system, and core spray system pumps. A condensate storage tank is defined as a seismic class I structure, playing the important role of providing flow to the operational system and the required static head for the suction of the condensate transfer pumps and the normal supply pump. According to the latest nuclear safety requirements, soil structure interaction must be considered in all seismic analyses. This study aims to rebuild the computer model of condensate storage tanks in Taiwan using the SAP 2000 program in conjunction with the lumped mass stick model and to evaluate the soil structure interaction by employing the SASSI 2000 program. The differences between the results with the soil structure interaction and spring model are compared via natural frequency and response spectrum curves. This computer model enables engineers to rapidly evaluate the safety margin of condensate storage tank following the occurrence of earthquakes or tsunamis.


Author(s):  
Juan Luo ◽  
Jiacheng Luo ◽  
Lei Sun

Nuclear class equipment should be assessed for seismic safety before they are used in nuclear power plant. According to nuclear safety codes and regulations, all seismic category I equipments shall be designed enduring safety shutdown earthquake (SSE). That is, the stress evaluation needs to be accomplished for those structures. For some components, the deformation evaluation needs to be performed as well to assure the function integrity of the equipment. In this paper, the seismic analysis for an explosion-proof valve used in nuclear power plant, which exactly belongs to seismic category I equipment, has been conducted based on finite element method. The natural frequency, vibration mode and seismic response of the structure have been obtained through calculation, and the stress and deformation under the combined loadings of gravity, internal pressure, blast and seismic load have been evaluated according to ASME AG-1. The bolts of the structure have been qualified according to ASME III-NF as well. The results show that the design of the explosion-proof valve is in compliance with the requirement of corresponding nuclear safety standards.


Sign in / Sign up

Export Citation Format

Share Document