scholarly journals Seismic Performance of CAP1400 Nuclear Power Station considering Foundation Uplift

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ling-Yun Peng ◽  
Ying-Jie Kang ◽  
Zhen-Yun Tang ◽  
Hua-Ting Chen

Under earthquake action, the reinforced concrete structure at the edge of the CAP1400 nuclear power plant foundation slab will be uplifted. In order to determine the seismic performance of this structure, a 1 : 12 scale shaking table test model was fabricated using gypsum as simulated concrete in order to meet scaled design requirements. By testing this model, the seismic response of the structure with consideration of the foundation uplift was obtained. Numerical analyses of the test model and the prototype structure were conducted to gain a better understanding of the structural seismic performance. When subjected to earthquakes, the foundation slab of the nuclear power plant experiences a slight degree of uplift but remains in the elastic stage due to the weight of the structure above, which provides an antioverturning moment. The numerical simulation is in general agreement with the test results, suggesting numerical simulations could be accurately employed in place of physical tests. The superstructure displacement response was found not to affect the safety of adjacent structures, and the seismic performance of the structure was shown to meet the relevant design requirements, demonstrating that this approach to modelling can serve as a design basis for the CAP1400 nuclear power demonstration project.

2013 ◽  
Vol 479-480 ◽  
pp. 1045-1050
Author(s):  
Wei Ting Lin ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

This study is aim to evaluate the seismic response of the motor control center cabinet in a nuclear power plant using shaking table test and 3D finite element analysis method. Three typical types of motor control center cabinet were used in this study and frequency curves and spectral response acceleration were used as the indices of the dynamic response. The results indicated that the resonance frequency for X and Y direction is about 12 Hz and 15 Hz, respectively, which is verified by the numerical results. The frequencies curves and spectral response acceleration generated by numerical and experimental method were similar and well fitting. Although the numerical method obtained the conservative results, the model accurately represents the dynamic characteristics of the actual motor control center cabinet for seismic verification.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ling-Yun Peng ◽  
Ying-Jie Kang ◽  
Zong-Rui Lai ◽  
Yu-Ke Deng

A parameter optimization design method is proposed for multiple coal bucket dampers (CBDs) to reduce the seismic response of coal-fired power plants. To test the damping effect of the optimized CBDs, a 1 : 30 scale shaking table test model of a power plant structure was fabricated. A comparative testing program was conducted using three seismic excitations on a model with and without CBDs. A finite element analysis model, replicating the conditions of the shaking table test, was constructed for comparison, and the shock absorption effects of CBDs subjected to 22 groups of far-field seismic action and 28 groups of near-field seismic action were analyzed. Finally, the influence of changes in the structural period on the seismic response of the CBD-equipped structure was studied. The results indicate that the use of CBDs in a coal-fired power plant structure, based on an optimization design method for multiple-tuned mass dampers (MTMDs), results in a significant reduction in the structure displacement response, displays a certain discreteness under different excitations, and maintains a certain damping stability even as the structural period changes. Overall, the use of CBDs is a promising prospect for improving the seismic performance of coal-fired power plant structures.


Author(s):  
Wang Chengcheng

Abstract As states in the IAEA SSR-2/1 (Rev.1) and IAEA TECDOC-1791, the defence in depth concept is not to be understood as merely limited to the request for the implementation of a number of consecutive barriers and protection levels, but is to be understood as the main general principle that leads to the formulation of safety requirements including requirements necessary to achieve the quality and reliability expected for the barriers and for systems ensuring their integrity. Thus, the application of defence in depth concept is not only limited in the reactor core design, but also can extend to a wider range in nuclear power plant design. In this paper, the application of defence in depth concept, which is defined in IAEA latest requirements, in the irradiated fuel water pool storage, electrical system, internal hazards and external hazards of the nuclear power plant design are reviewed. Base on the study of the newest standard and codes, the design requirements of each level of defence in depth in the above systems are confirmed. The analysis of defence in depth design features of an advanced nuclear power plant in China are also show the application value of defence in depth in these extended regions.


Author(s):  
Jie Xiong

Since the responses of Liquid storage tanks (LST) include the liquid motion, structural motion, and fluid-structure interaction (FSI) under the earthquake ground motion, it is a difficult problem about shaking table test model for satisfying similarity ratio requirement. The two experimental models, namely satisfied FSI similarity ratio model (FSI model) and unsatisfied FSI similarity ratio (un-FSI) model, respectively, are presented in this paper. The PCS storage tank of AP1000 Nuclear Power Engineering, as the study project, is studied by Adina software, and the responses, such as stress, stain, and displacement, etc., of prototype model, FSI model, and un-FSI model are compared. The results provide that when researchers study the rigidity LST dynamic response parameters and vibration characteristics, such as displacement, acceleration and liquid wave height, the tank wall stress response parameters etc., FSI model should be used.


Author(s):  
Huadong Zhu

Nuclear Power Project RCL (reactor coolant loop) is one of the most critical nuclear safety class 1 equipment in PWR nuclear power plant. Filled with borated water, the RCL is a closed loop and serves as pressure boundary incorporating the reactor pressure vessel, steam generator and reactor coolant pump. Since in-service inspection is required for welds of the RCL, the two sides of the welds shall be bored to meet UT (Ultrasonic Testing) inspection requirements. The design standard states that “if the weld is subject to service inspection, the length of the counterbore shall be 2Tmin (Tmin = minimum of wall thickness) for pipe and Tmin for components and fittings. Therefore, the minimal wall thickness of the boring area inside the RCL shall also meet design requirements. Examination of the RCLs delivered to the nuclear power project sites showed that the wall thickness of some parts of the RCL exceed tolerance in varying degrees (the wall thickness is too thin). The RCL borings need to be analyzed to mitigate the negative impact of insufficient wall thickness, maintain RCL wall thickness to the largest extent and meet design requirements. Under the condition of the jobsite data are idealized, this study analyzes the boring plans for the cold leg of loop B at the reactor vessel side for this nuclear power plant Unit 1 NI (Nuclear Island) and discusses the three methods of boring, namely, general boring, taper boring and eccentric boring. It finds that a combination of taper boring and eccentric boring is the optimal plan. This joint boring technique can help achieve the minimal boring wall thickness, reduce the grinding quantity and maintain the required wall thickness, thus resolving the out-of-tolerance issue. In addition, it meets the design requirements, the wall thickness and in-service inspection requirements. Supervision agency approved the application of the joint boring technique to the RCL for the projects. The RCL installation has proved to be a success.


Sign in / Sign up

Export Citation Format

Share Document