A general frequency adaptive framework for damped response analysis of wind turbines

2021 ◽  
Vol 143 ◽  
pp. 106605
Author(s):  
S. Adhikari ◽  
S. Bhattacharya
2011 ◽  
Vol 25 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Jing Li ◽  
Jianyun Chen ◽  
Xiaobo Chen

Author(s):  
Jianwen Xu

Abstract Wind turbines are subjected to dynamic loads during their service life. The yaw bearing is an important part which also bears these loads. In this study, a series of 5-megawatt (MW) wind turbines are analyzed for their dynamic response under normal operating conditions while exposed to turbulent wind. These models are Onshore, Monopile, ITI Barge, Spar, Tension-Leg Platform (TLP), Semi-Submerisible. TurbSim is used to prescribe turbulent-wind inflow and a time domain FAST code is applied in order to conduct the Aero-Hydro-Servo-Elastic coupled analysis on the yaw loads of the wind turbines. Three different average wind velocities are examined to compare the load response of the wind turbine to turbulent wind on the yaw bearing. A Gumbel distribution coupled maximum likelihood method is used to predict ultimate loads. And the rain flow counting algorithm, the linear cumulative damage law and S-N curve theory are used to predict the damage equivalent load. The results should aid the fatigue design of yaw bearing and the yaw control system according to different wind turbine design.


2017 ◽  
Vol 21 (3) ◽  
pp. 973-989
Author(s):  
Da-Gang Sun ◽  
Jin-Jun Guo ◽  
Yong Song ◽  
Bi-juan Yan ◽  
Zhan-Long Li ◽  
...  

The flutter stability of wind turbine blades is one of the important contents in the research of wind turbines. The bending stiffness of blades has decreased with the development of large-sized wind turbines. To achieve damping flutter-suppressing on the long spanwise blades, perforated damping blade was proposed under the consideration of the structural damping factor and the structural stiffness in this paper. Through the study of the unit cell, the deformation model was established and the structural loss factor of the perforated damping blade was derived. The undamped blade and the perforated damping blade, combined with the relevant parameters of a 1500 kW wind turbine blade, were established to simulate the flutter-suppressing abilities and the structural stability. The dynamic response analysis was accomplished with the large deformation theory, and the MPC algorithm was used to realize grid mobile and data delivery, according to the Newmark time integration method. The comparison results show that the perforated damping blade has both a higher structural damping factor and a better structural stiffness.


2019 ◽  
Vol 1168 ◽  
pp. 022008
Author(s):  
Kong-de He ◽  
Zhi-chao Chen ◽  
Xu-guang Xie ◽  
Zi-fan Fang ◽  
Xue-hui He

Author(s):  
Oliver T. Filsoof ◽  
Morten H. Hansen ◽  
Anders Yde ◽  
Xuping Zhang

Various modal analysis methods are available for single-rotor wind turbines, but there is no report and guidance on the modal property analysis of multi-rotor wind turbines. This paper presents a dynamic modeling method for the modal response analysis of a wind turbine with two three-bladed isotropic rotors. The equations of motion are derived using Lagrange’s equations and are further linearized at a steady-state equilibrium. To avoid using Floquet Theory to remove the periodic coefficients, multi-blade coordinates are utilized. Comparison between the numerical simulations and a high-fidelity model in HAWC2 shows agreements in terms of modal frequencies. The results shows that the whirling modes splits into symmetric and asymmetric rotor modes.


2012 ◽  
Vol 608-609 ◽  
pp. 649-652
Author(s):  
Fa Suo Yan ◽  
Hong Wei Wang ◽  
Jun Zhang ◽  
Da Gang Zhang

A numerical code, known as COUPLE, which has been developed to perform hydrodynamic analysis of floating body with a mooring system, is extended to collaborate with FAST to evaluate the interactions between wind turbine and its floating base. FAST is developed by National Renewable Energy Lab (NREL) for aeroelastic simulation of wind turbines. A dynamic response analysis of a spar type floating wind turbine system is carried out by the method. Two types of simulation of wind load are used in the analysis. One type is a constant steady force and the other is a six-component dynamic load from a turbulent wind model. Numerical results of related platform motions under random sea conditions are presented in time and frequency domain. Comparison of results is performed to explain the difference of two analyses. The conclusions derived in this study may provide reference for the design of offshore floating wind turbines.


2018 ◽  
Vol 2 (Special edition 2) ◽  
pp. 59-70
Author(s):  
Neven Hadžić ◽  
Ivan Ćatipović ◽  
Marko Tomić ◽  
Nikola Vladimir ◽  
Hrvoje Kozmar

The purpose of the present study is to review the state-of-the-art in research and development of offshore wind turbines in order to address the latest findings and trends in structural design and response analysis. This could enhance a development of sophisticated offshore wind turbines. To complete such a task, a detailed review of offshore wind renewable energy potential, wind, wave and sea current loading as well as structural analysis and design procedures and experimental work are presented.


Sign in / Sign up

Export Citation Format

Share Document