Flutter stability analysis of a perforated damping blade for large wind turbines

2017 ◽  
Vol 21 (3) ◽  
pp. 973-989
Author(s):  
Da-Gang Sun ◽  
Jin-Jun Guo ◽  
Yong Song ◽  
Bi-juan Yan ◽  
Zhan-Long Li ◽  
...  

The flutter stability of wind turbine blades is one of the important contents in the research of wind turbines. The bending stiffness of blades has decreased with the development of large-sized wind turbines. To achieve damping flutter-suppressing on the long spanwise blades, perforated damping blade was proposed under the consideration of the structural damping factor and the structural stiffness in this paper. Through the study of the unit cell, the deformation model was established and the structural loss factor of the perforated damping blade was derived. The undamped blade and the perforated damping blade, combined with the relevant parameters of a 1500 kW wind turbine blade, were established to simulate the flutter-suppressing abilities and the structural stability. The dynamic response analysis was accomplished with the large deformation theory, and the MPC algorithm was used to realize grid mobile and data delivery, according to the Newmark time integration method. The comparison results show that the perforated damping blade has both a higher structural damping factor and a better structural stiffness.

2020 ◽  
Vol 23 (14) ◽  
pp. 3037-3047
Author(s):  
Xugang Hua ◽  
Qingshen Meng ◽  
Bei Chen ◽  
Zili Zhang

Classical flutter of wind turbine blades is one of the most destructive instability phenomena of wind turbines especially for several-MW-scale turbines. In the present work, flutter performance of the DTU 10-MW offshore wind turbine is investigated using a 907-degree-of-freedom aero-hydro-servo-elastic wind turbine model. This model involves the couplings between tower, blades and drivetrain vibrations. Furthermore, the three-dimensional aerodynamic effects on wind turbine blade tip have also been considered through the blade element momentum theory with Bak’s stall delay model and Shen’s tip loss correction model. Numerical simulations have been carried out using data calibrated to the referential DTU 10-MW offshore wind turbine. Comparison of the aeroelastic responses between the onshore and offshore wind turbines is made. Effect of structural damping on the flutter speed of this 10-MW offshore wind turbine is investigated. Results show that the damping in the torsional mode has predominant impact on the flutter limits in comparison with that in the bending mode. Furthermore, for shallow water offshore wind turbines, hydrodynamic loads have small effects on its aeroelastic response.


Author(s):  
U. Nopp-Mayr ◽  
F. Kunz ◽  
F. Suppan ◽  
E. Schöll ◽  
J. Coppes

AbstractIncreasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotating wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied in environmental impact assessments of WPP within woodlands worldwide.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


Author(s):  
Yaozhi Lu ◽  
Fanzhou Zhao ◽  
Loic Salles ◽  
Mehdi Vahdati

The current development of wind turbines is moving toward larger and more flexible units, which can make them prone to fatigue damage induced by aeroelastic vibrations. The estimation of the total life of the composite components in a wind turbine requires the knowledge of both low and high cycle fatigue (LCF and HCF) data. The first aim of this study is to produce a validated numerical model, which can be used for aeroelastic analysis of wind turbines and is capable of estimating the LCF and HCF loads on the blade. The second aim of this work is to use the validated numerical model to assess the effects of extreme environmental conditions (such as high wind speeds) and rotor over-speed on low and high cycle fatigue. Numerical modelling of this project is carried out using the Computational Fluid Dynamics (CFD) & aeroelasticity code AU3D, which is written at Imperial College and developed over many years with the support from Rolls-Royce. This code has been validated extensively for unsteady aerodynamic and aeroelastic analysis of high-speed flows in gas turbines, yet, has not been used for low-speed flows around wind turbine blades. Therefore, in the first place the capability of this code for predicting steady and unsteady flows over wind turbines is studied. The test case used for this purpose is the Phase VI wind turbine from the National Renewable Energy Laboratory (NREL), which has extensive steady, unsteady and mechanical measured data. From the aerodynamic viewpoint of this study, AU3D results correlated well with the measured data for both steady and unsteady flow variables, which indicated that the code is capable of calculating the correct flow at low speeds for wind turbines. The aeroelastic results showed that increase in crosswind and shaft speed would result in an increase of unsteady loading on the blade which could decrease the lifespan of a wind turbine due to HCF. Shaft overspeed leads to significant increase in steady loading which affects the LCF behaviour. Moreover, the introduction of crosswind could result in significant dynamic vibration due to forced response at resonance.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
René M. M. Slot ◽  
Lasse Svenningsen ◽  
John D. Sørensen ◽  
Morten L. Thøgersen

Wind turbines are subjected to fatigue loading during their entire lifetime due to the fluctuating excitation from the wind. To predict the fatigue damage, the design standard IEC 61400-1 describes how to parametrize an on-site specific wind climate using the wind speed, turbulence, wind shear, air density, and flow inclination. In this framework, shear is currently modeled by its mean value, accounting for neither its natural variance nor its wind speed dependence. This very simple model may lead to inaccurate fatigue assessment of wind turbine components, whose structural response is nonlinear with shear. Here we show how this is the case for flapwise bending of blades, where the current shear model leads to inaccurate and in worst case nonconservative fatigue assessments. Based on an optimization study, we suggest modeling shear as a wind speed dependent 60% quantile. Using measurements from almost one hundred sites, we document that the suggested model leads to accurate and consistent fatigue assessments of wind turbine blades, without compromising other main components such as the tower and the shaft. The proposed shear model is intended as a replacement to the mean shear, and should be used alongside the current IEC models for the remaining climate parameters. Given the large number of investigated sites, a basis for evaluating the uncertainty related to using a simplified statistical wind climate is provided. This can be used in further research when assessing the structural reliability of wind turbines by a probabilistic or semiprobabilistic approach.


Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


Sign in / Sign up

Export Citation Format

Share Document