Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications

Solar Energy ◽  
2011 ◽  
Vol 85 (11) ◽  
pp. 3017-3027 ◽  
Author(s):  
Ming Liu ◽  
Frank Bruno ◽  
Wasim Saman
2010 ◽  
Vol 168-170 ◽  
pp. 895-899 ◽  
Author(s):  
Jian You Long

This paper addresses a simulation investigation of a fin-tube thermal storage unit involving phase change process dominated by heat conduction. The heat transfer of fin-tube thermal storage unit with phase change material (PCM) was simulated by Fluent. Graphical results including outlet temperature of heat transfer fluid (HTF), average temperature of PCM and phase front interface of solid and liquid phase of PCM versus time and fin distance were presented and discussed. According to simulation results, it was concluded that only the fin-tube thermal storage unit with fin distance of 12fin/inch could satisfied the request of heat release performance of household heat pump water heater for shower.


2020 ◽  
Vol 44 (13) ◽  
pp. 10414-10429
Author(s):  
Yun Liu ◽  
Tian‐tian Chen ◽  
Yue Dong ◽  
Yong‐Hua Li ◽  
Da‐Wen Zhong

1986 ◽  
Vol 108 (4) ◽  
pp. 282-289 ◽  
Author(s):  
M. Kamimoto ◽  
Y. Abe ◽  
S. Sawata ◽  
T. Tani ◽  
T. Ozawa

A latent thermal storage unit of 30 kWh using form-stable high density polyethylene (HDPE) rods has been developed mainly for solar thermal applications, and heat transfer experiments have been carried out. A direct contact heat transfer technique between HDPE rods and ethylene glycol (EG: a heat transfer fluid) is adopted. Charge and discharge characteristics have been obtained for various thermal input/output and different initial temperature profiles in the storage unit. The direct contact heat transfer and a formation of a clear thermocline provide a good performance for all the cases. Discussions are given of thermal efficiency, storage density, and thermal insulation.


Author(s):  
Monica F. Bonadies ◽  
Mark Ricklick ◽  
J. S. Kapat

When collecting the energy of the sun for domestic use, several options exist, one being the use of evacuated tube collectors with internal heat pipes. This study proposes a system integrating these collectors with a storage unit using the phase change of paraffin wax to store energy. The storage unit makes use of a finned heat exchanger, with paraffin wax on the shell side and glycol on the tube side as the heat transfer fluid. The heat exchanger is embedded within the storage paraffin wax with a volume of 2 ft3. The heat exchanger also includes a separate loop for water to flow through and receive thermal energy from the melted wax. Although the wax has the benefit of being inexpensive and nontoxic, it has the problem of low thermal conductivity. Therefore, the heat exchanger has large copper fins brazed to it to extend areas of high thermal conductivity into the wax reservoir. The unit used in this study contains 14 fins. The use of fins will help to speed up the melting of the wax while solar energy is collected, since there is more heat transfer area. When most of the wax is melted, heat can be exchanged to water for domestic use. To determine the benefit of the fins, wax and working fluid temperature data will be taken from a constructed thermal energy storage unit, and then it is used to verify a finite-difference analytical model of the thermal operating characteristics. The maximum operating temperature of the glycol/water mix heat transfer fluid was approximately 65° C when the fluid flowed at 1 gallon per minute. The storage unit was able to store melted wax overnight with a 2–3°C temperature drop with the ambient temperature approximately at 30°C. City water at approximately 3 gpm was used to test the freezing side. The one dimensional model proved useful in predicting the heat storage mode of the system but had some error in predicting the heat release mode of the unit. The model also points to the fact that there are several considerations to be taken when simulating phase change energy storage processes.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1496
Author(s):  
Mohammad Ghalambaz ◽  
S.A.M. Mehryan ◽  
Ahmad Hajjar ◽  
Mohammad Yacoub Al Shdaifat ◽  
Obai Younis ◽  
...  

A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.


Sign in / Sign up

Export Citation Format

Share Document