Black-pigmented polypropylene materials for solar thermal absorbers – Effect of carbon black concentration on morphology and performance properties

Solar Energy ◽  
2014 ◽  
Vol 110 ◽  
pp. 420-426 ◽  
Author(s):  
M. Povacz ◽  
G.M. Wallner ◽  
R.W. Lang
Chem ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 670-685
Author(s):  
Changxia Shi ◽  
Zi-Chen Li ◽  
Lucia Caporaso ◽  
Luigi Cavallo ◽  
Laura Falivene ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6592
Author(s):  
Artur Seweryn ◽  
Tomasz Wasilewski ◽  
Anita Bocho-Janiszewska

The article shows that the type and concentration of inorganic salt can be translated into the structure of the bulk phase and the performance properties of ecological all-purpose cleaners (APC). A base APC formulation was developed. Thereafter, two types of salt (sodium chloride and magnesium chloride) were added at various concentrations to obtain different structures in the bulk phase. The salt addition resulted in the formation of spherical micelles and—upon addition of more electrolyte—of aggregates having a lamellar structure. The formulations had constant viscosities (ab. 500 mPa·s), comparable to those of commercial products. Essential physical-chemical and performance properties of the four formulations varying in salt types and concentrations were evaluated. It was found that the addition of magnesium salt resulted in more favorable characteristics due to the surface activity of the formulations, which translated into adequately high wettability of the investigated hydrophobic surfaces, and their ability to emulsify fat. A decreasing relationship was observed in foaming properties: higher salt concentrations lead to worse foaming properties and foam stability of the solutions. For the magnesium chloride composition, the effect was significantly more pronounced, as compared to the sodium chloride-based formulations. As far as safety of use is concerned, the formulations in which magnesium salt was used caused a much lesser irritation compared with the other investigated formulations. The zein value was observed to decrease with increasing concentrations of the given type of salt in the composition.


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


1996 ◽  
Vol 5 (5) ◽  
pp. 096369359600500
Author(s):  
L. Rejón ◽  
R. Flores ◽  
M. A. Ponce ◽  
V.M. Castaño

The electrical performance (current, I vs. voltage, V) of a novel polymer-based composite, modified with varying amounts of carbon black, was studied. Distinctive regimens of the I vs. V curves, before and after a critical carbon black concentration, were found and the feasible mechanisms for such behaviour are discussed.


2018 ◽  
Vol 61 (3) ◽  
pp. 370-380 ◽  
Author(s):  
tarek Abou Elmaaty ◽  
eman abdelaziz ◽  
Dalia Nasser ◽  
khaled abdelfattah ◽  
sherif elkadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document