Study on the solar energy absorption of hybrid solar cells with trapezoid-pyramidal structure based PEDOT:PSS/c-Ge

Solar Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 635-643 ◽  
Author(s):  
Fei Zhao ◽  
Xifang Chen ◽  
Zao Yi ◽  
Feng Qin ◽  
Yongjian Tang ◽  
...  
2015 ◽  
Vol 182 ◽  
pp. 416-423 ◽  
Author(s):  
Dongyu Li ◽  
Weifu Sun ◽  
Lexi Shao ◽  
Shuying Wu ◽  
Zhen Huang ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 10142-10147

Solar energy is one in all few sources to renewable power and it is considerably critical in our each day lifestyles usage thus resulted to ensure the practicality and usefulness of the devices which regularly used to capture and manipulate solar energy. In this work, studies the effect of conjugated chlorophyll (iCHLO) on power conversion efficiency with relation of iCHLO where optical and electrical properties were investigated. These hybrid solar cells consist of combination of organic (Poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) and iCHLO) and inorganic (Titanium Dioxide, TiO2) materials. These hybrid solar cells were fabricated bilayer of ITO/TiO2/PEDOT: PSS/iCHLO/Al. Chlorophyll compound (CHLO) was extracted from the Pandanus amaryllifolius leaves. CHLO undergoes conjugate process by oxidation polymerization using Ferric Chloride (FeCl3) as catalyst. Different percentage of FeCl3 was varied by 5%, 10% and 15% of CHLO molecular weight. Result shows that UV-Vis absorption spectra of CHLO was absorbed in the range of 400 nm – 600 nm (CHLO-PA) and 240 nm - 360 nm (iCHLO-PA). The highest power conversion efficiency (PCE) was obtained at 1.33% and electrical conductivity is 0.135 Scm1 for ITO/TiO2/PEDOT: PSS/iCHLO-PA 10% hybrid solar cell.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2521
Author(s):  
Jun-ichi Fujisawa

Photoinduced charge separation (PCS) plays an essential role in various solar energy conversions such as photovoltaic conversion in solar cells. Usually, PCS in solar cells occurs stepwise via solar energy absorption by light absorbers (dyes, inorganic semiconductors, etc.) and the subsequent charge transfer at heterogeneous interfaces. Unfortunately, this two-step PCS occurs with a relatively large amount of the energy loss (at least ca. 0.3 eV). Hence, the exploration of a new PCS mechanism to minimize the energy loss is a high-priority subject to realize efficient solar energy conversion. Interfacial charge-transfer transitions (ICTTs) enable direct PCS at heterogeneous interfaces without energy loss, in principle. Recently, several progresses have been reported for ICTT at organic-inorganic semiconductor interfaces by our group. First of all, new organic-metal oxide complexes have been developed with various organic and metal-oxide semiconductors for ICTT. Through the vigorous material development and fundamental research of ICTT, we successfully demonstrated efficient photovoltaic conversion due to ICTT for the first time. In addition, we revealed that the efficient photoelectric conversion results from the suppression of charge recombination, providing a theoretical guiding principle to control the charge recombination rate in the ICTT system. These results open up a way to the development of ICTT-based photovoltaic cells. Moreover, we showed the important role of ICTT in the reported efficient dye-sensitized solar cells (DSSCs) with carboxy-anchor dyes, particularly, in the solar energy absorption in the near IR region. This result indicates that the combination of dye sensitization and ICTT would lead to the further enhancement of the power conversion efficiency of DSSC. In this feature article, we review the recent progresses of ICTT and its application in solar cells.


2012 ◽  
Vol 2 (2) ◽  
pp. 147-167
Author(s):  
Xuehua Zhang ◽  
Yujing Xia ◽  
Xuemin Li ◽  
Tao He

Sign in / Sign up

Export Citation Format

Share Document