Visible light active metal-free photocatalysis: N-doped graphene covalently grafted with g-C3N4 for highly robust degradation of methyl orange

2019 ◽  
Vol 94 ◽  
pp. 99-105 ◽  
Author(s):  
Kavitha Santha kumar ◽  
Balakumar Vellaichamy ◽  
Tharmaraj Paulmony
2012 ◽  
Vol 568 ◽  
pp. 364-367
Author(s):  
Yan Hong Li ◽  
Dong Dong Tan ◽  
De Fu Bi ◽  
Wei Lu ◽  
Shi Hong Xu

A visible-light-active N-TiO2photocatalyst was prepared by a simple method: TiN nanoparticles were calcined in the O2/N2atmosphere. The prepared N-TiO2shows high photocatalytic activity for the degradation of methyl orange in water under visible light irradiation. The photodegradation results indicate that the prepared photocatalysts have the best photocatalytic activity when TiN was calcined at 650 °C for 15 min in the O2/N2atmosphere with 1:15 (volume) of O2/N2.


2016 ◽  
Vol 703 ◽  
pp. 321-325
Author(s):  
Hai Feng Chen ◽  
Jia Mei Chen ◽  
Zhi Xue Pan

In this work, novel Cu/BiVO4 photocatalyst were prepared by a low-temperature solid state grinding method using Bi (NO3)3•5H2O, NH4VO3 and Cu (NO3)2•2H2O as raw materials. The structure and properties of the samples were characterized by Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and UV-vis diffused reflectance spectroscopy (DRS); Using the degradation of methyl orange (MO) as the probe, it was simulated as the degradation of sewage under the visible light to study the influence of the illumination time and the amount of photocatalysts. Compared with the pure BiVO4, the visible-light absorption scope of BiVO4 was broadened by doping Cu, the UV-Visible absorption edges were slightly red shift and the band gap was narrower. Comparatively speaking, the results indicted that the doped Cu enhanced the photocatalytic activities of BiVO4.


2015 ◽  
Vol 39 (8) ◽  
pp. 6171-6177 ◽  
Author(s):  
Mingshan Fan ◽  
Bo Hu ◽  
Xu Yan ◽  
Chengjie Song ◽  
Tianjun Chen ◽  
...  

Heterostructure complexes of Cu2O/NaNbO3exhibited high catalytic activities on the degradation of methyl orange.


2018 ◽  
Vol 18 (12) ◽  
pp. 8282-8288 ◽  
Author(s):  
Yuanyuan Tang ◽  
Yinlong Xu ◽  
Caiyu Qi ◽  
Xianyang Li ◽  
Enming Xing ◽  
...  

Cu2O nanocubes with different size (ranging from 20 nm to 400 nm) were prepared by a seed-mediated method to systematically explore the strong size-dependent properties in photocatalytic degradation of methyl orange (MO). Cu2O nanotubes were characterized by TEM, XRD, UV-Vis measurements. The size-dependent photocatalytic efficiency of the Cu2O nanocubes was evaluated by degradation of methyl orange (MO) in water under visible light (λ > 420 nm) irradiation. Furthermore, the photocurrent, linear sweep voltammetry (LSV) and electrochemical impedance spectra (EIS) measurements were applied to elucidate the size-dependent properties of Cu2O nanocubes, which demonstrated that smaller Cu2O nanocubes with certain length (30 nm) showed higher current density, faster electron transfer and lower rate of charge recombination in their exposed (100) facet. Therefore, 30 nm Cu2O nanocubes showed stronger visible light absorption capacity and higher photocatalytic activity in MO degradation among a series of nanocubes (20, 30, 100, 130, 200 and 400 nm) and their corresponding photocatalytic activities decreased with increasing the particles sizes.


Sign in / Sign up

Export Citation Format

Share Document