Pressure effects on the donor binding energy in zinc-blende InGaN/GaN quantum dot

2009 ◽  
Vol 46 (6) ◽  
pp. 840-845 ◽  
Author(s):  
Congxin Xia ◽  
Tianxing Wang ◽  
Shuyi Wei
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Guangxin Wang ◽  
Xiuzhi Duan ◽  
Wei Chen

Within the framework of the effective mass approximation, barrier thickness and hydrostatic pressure effects on the ground-state binding energy of hydrogenic impurity are investigated in wurtzite (WZ) GaN/AlxGa1−xN strained quantum dots (QDs) by means of a variational approach. The hydrostatic pressure dependence of physical parameters such as electron effective mass, energy band gaps, lattice constants, and dielectric constants is considered in the calculations. Numerical results show that the donor binding energy for any impurity position increases when the hydrostatic pressure increases. The donor binding energy for the impurity located at the central of the QD increases firstly and then begins to drop quickly with the decrease of QD radius (height) in strong built-in electric fields. Moreover, the influence of barrier thickness along the QD growth direction and Al concentration on donor binding energy is also investigated. In addition, we also found that impurity positions have great influence on the donor binding energy.


2012 ◽  
Vol 376 (42-43) ◽  
pp. 2712-2716 ◽  
Author(s):  
Zaiping Zeng ◽  
Christos S. Garoufalis ◽  
Sotirios Baskoutas ◽  
Andreas F. Terzis

2006 ◽  
Vol 20 (18) ◽  
pp. 1127-1134 ◽  
Author(s):  
A. JOHN PETER

The binding energy of a shallow hydrogenic impurity of a spherical quantum dot confined by harmonic oscillator-like and by rectangular well-like potentials, using a variational procedure within the effective mass approximation, has been determined. The calculations of the binding energy of the donor impurity as a function of the system geometry, and the donor impurity position have been investigated. The binding energy of shallow donor impurity depends not only on the quantum confinements but also on the impurity position. Our results reveal that (i) the donor binding energy decreases as the dot size increases irrespective of the impurity position, and (ii) the binding energy values of rectangular confinement are larger than the values of parabolic confinement and (iii) the rectangular confinement is better than the parabolic confinement in a spherical quantum dot.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Guang-Xin Wang ◽  
Li-Li Zhang ◽  
Huan Wei

Based on the effective-mass approximation and variational procedure, the ground-state donor binding energy in a cylindrical zinc-blende InxGa1-xN/GaN symmetric coupled quantum dots (SCQDs) is investigated in the presence of the external electric field. Numerical results show that the donor binding energy increases firstly until a maximum value, and then it begins to drop quickly in all the cases with decreasing the dot radius. As the thickness of left dot and right dot decreases, the donor binding energy increases monotonically at first, reaches a maximum value, and then drops rapidly for an impurity ion located at the right dot center and the middle barrier center. Moreover, the donor binding energy for an impurity ion located at the center of the left dot is insensitive to the variation of dot thickness for large dot thickness due to the Stark effect. Meanwhile, the impurity position plays an important role on the change of the donor binding energy under the external electric field. In particular, the impurity position corresponding to the peak value of the donor binding energy is shifted toward the left QD with increasing the external electric field strength.


Sign in / Sign up

Export Citation Format

Share Document