Laser light and external magnetic field control of polaron in asymmetric quantum dot

2019 ◽  
Vol 129 ◽  
pp. 77-90 ◽  
Author(s):  
M.F.C. Fobasso ◽  
A.J. Fotue ◽  
S.C. Kenfack ◽  
C.M. Ekengue ◽  
C.D.G. Ngoufack ◽  
...  
2012 ◽  
Vol 26 (30) ◽  
pp. 1250185 ◽  
Author(s):  
ZHI-XIN LI ◽  
JING-LIN XIAO

The properties of a strong-coupled bound magnetopolaron in an asymmetric quantum dot (QD) have been investigated by using the Tokuda modified linear combination operator and the unitary transformation methods on the basis of the Huybrechts' strong-coupled model. We derive the expressions of the ground-state energy as function of the transverse and longitudinal confinement lengths, the magnetic field. Numerical calculation is performed and the results show that the ground-state energy of the bound magnetopolaron splits into two branches, taking into account the spin influences. And the ground-state energy decreases with increasing the transverse and longitudinal confinement lengths and increases with the rising of the magnetic field.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950263
Author(s):  
Shu-Ping Shan ◽  
Shi-Hua Chen ◽  
Ren-Zhong Zhuang ◽  
Chun Hu

Influence of the magnetic field on the properties of the polaron in an asymmetric quantum dot is studied by using the Pekar variation method. The expression of the magnetopolaron ground-state energy is obtained by theoretical derivation. The relationship between the ground-state energy of the magnetopolaron with the transverse confinement strength, the longitudinal confinement strength and the magnetic field cyclotron resonance frequency are further discussed by us. Due to the crystal structure inversion asymmetry and the time inversion asymmetry, the polaron energy causes Rashba spin–orbit splitting and Zeeman splitting. Under the strong and weak magnetic fields, we discuss the dominant position of Rashba effect and Zeeman effect, respectively. Due to the presence of phonons, the polaron is more stable than the bare electron state, and the energy splitting is more stable.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Enguo Chen ◽  
Jianyao Lin ◽  
Tao Yang ◽  
Yu Chen ◽  
Xiang Zhang ◽  
...  

2012 ◽  
Vol 10 (07) ◽  
pp. 1250077 ◽  
Author(s):  
ZHAO-HUA DING ◽  
YONG SUN ◽  
JING-LIN XIAO

We investigate the eigenenergies and the eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to LO-phonon in an asymmetric quantum dot (QD) by using variational method of Pekar type. The present system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, the probability density of the electron oscillates in the QD with a certain period. It is found that the oscillation period is an increasing function of the transverse and the longitudinal effective confinement lengths of the QD, whereas it is a decreasing one of the electron–phonon coupling strength.


Sign in / Sign up

Export Citation Format

Share Document