external static magnetic field
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianhua Wang ◽  
Hongbo Xu ◽  
Li Zhou ◽  
Ximing Liu ◽  
Hongyun Zhao

Purpose This paper aims to investigate the mechanism of Ni particles distribution in the liquid Sn3.5Ag melt under the external static magnetic field. The control steps of Ni particles and the Sn3.5Ag melt metallurgical process were studied. After aging, the microhardness of pure Sn3.5Ag, Sn3.5Ag containing randomly distributed Ni particles and Sn3.5Ag containing columnar Ni particles were compared. Design/methodology/approach Place the sample in a crucible for heating. After the sample melts, place a magnet directly above and below the sample to provide a magnetic field. Sn3.5Ag with the different morphological distribution of Ni particles was obtained by holding for different times under different magnetic field intensities. Finally, pure Sn3.5Ag, Sn3.5Ag with random distributed Ni particles and Sn3.5Ag with columnar Ni particles were aged and their microhardness was tested after aging. Findings The experimental results show that with the increase of magnetic field strength, the time for Ni particle distribution in Sn3.5Ag melt to reach equilibrium is shortened. After aging, the microhardness of Sn3.5Ag containing columnar nickel particles is higher than that of pure Sn3.5Ag and Sn3.5Ag containing randomly distributed nickel particles. A chemical reaction is the control step in the metallurgical process of nickel particles and molten Sn3.5Ag. Originality/value Under the action of the magnetic field, Ni particles in Sn3.5Ag melt will be arranged into columns. With the increase of magnetic field strength, the shorter the time for Ni particles in Sn3.5Ag melt to arrange in a column. With the extension of the service time of the solder joint, if Sn3.5Ag with columnar nickel particles is used as the solder joint material, its microhardness is better than Sn3.5Ag with arbitrarily distributed nickel particles and pure Sn3.5Ag.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Davod Nobahar ◽  
Sirous Khorram ◽  
João D. Rodrigues

AbstractThis paper is devoted to the study of vortex beam transmission from an adjustable magnetized plasma-ferrite structure with negative refraction index. We use the angular spectral expansion technique together with the $$4\times 4$$ 4 × 4 matrix method to find out the transmitted intensity and phase profiles of incoming Laguerre-Gaussian beam. Based on numerical analysis we demonstrate that high transparency and large amount of Faraday rotation in the proximity of resonance frequency region, reverse rotation of spiral wave front, and side-band modes generation during propagation are the remarkable features of our proposed structure. These controllable properties of plasma-ferrite metamaterials via external static magnetic field and other structure parameters provide novel facilities for manipulating intensity and phase profiles of vortex radiation in transmission through the material. It is expected that the results of this work will be beneficial to develop active magneto-optical devices, orbital angular momentum based applications, and wavefront engineering.


2021 ◽  
Vol 44 (5) ◽  
Author(s):  
Friedrich Striggow ◽  
Lidiia Nadporozhskaia ◽  
Benjamin M. Friedrich ◽  
Oliver G. Schmidt ◽  
Mariana Medina-Sánchez

Abstract Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell’s motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors. Graphic Abstract


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 133
Author(s):  
Kunal Shastri ◽  
Mohamed Ismail Abdelrahman ◽  
Francesco Monticone

Metals, semiconductors, metamaterials, and various two-dimensional materials with plasmonic dispersion exhibit numerous exotic physical effects in the presence of an external bias, for example an external static magnetic field or electric current. These physical phenomena range from Faraday rotation of light propagating in the bulk to strong confinement and directionality of guided modes on the surface and are a consequence of the breaking of Lorentz reciprocity in these systems. The recent introduction of relevant concepts of topological physics, translated from condensed-matter systems to photonics, has not only given a new perspective on some of these topics by relating certain bulk properties of plasmonic media to the surface phenomena, but has also led to the discovery of new regimes of truly unidirectional, backscattering-immune, surface-wave propagation. In this article, we briefly review the concepts of nonreciprocity and topology and describe their manifestation in plasmonic materials. Furthermore, we use these concepts to classify and discuss the different classes of guided surface modes existing on the interfaces of various plasmonic systems.


2021 ◽  
Vol 26 (1) ◽  
pp. 28-34
Author(s):  
S. Polevoy ◽  
◽  
G. Kharchenko ◽  
S. Tarapov ◽  
O. Kravchuk ◽  
...  

Subject and Purpose. The use of spatially structured ferromagnets is promising for designing materials with unique predetermined electromagnetic properties welcome to the development of magnetically controlled microwave and optical devices. The paper addresses the electromagnetic properties of structured ferrite samples of a different shape (spatial geometry) and is devoted to their research by the method of electron spin resonance (ESR). Methods and methodology. The research into magnetic properties of structured ferrite samples was performed by the ESR method. The measurements of transmission coefficient spectra were carried out inside a rectangular waveguide with an external magnetic field applied. Results. We have experimentally shown that over a range of external magnetic field strengths, the frequency of the ferromagnetic resonance (FMR) of grooved ferrite samples (groove type spatial geometry) increases with the groove depth. The FMR frequency depends also on the groove orientation relative to the long side of the sample. We have shown that as the external static magnetic field approaches the saturation field of the ferrite, the FMR frequency dependence on the external static magnetic field demonstrates "jump-like" behavior. And as the magnetic field exceeds the ferrite saturation field, the FMR frequency dependence on the groove depth gets a monotonic character and rises with the further growth of the field strength. Conclusion. We have shown that the use of structured ferrites as microwave electronics components becomes reasonable at magnetic field strengths exceeding the saturation field of the ferrite. At these fields, such a ferrite offers a monotonically increasing dependence of the resonant frequency on the external magnetic field and on the depth of grooves on the ferrite surface. Structured ferrites are promising in the microwave range as components of controlled filters, polarizers, anisotropic ferrite resonators since they can provide predetermined effective permeability and anisotropy


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 651
Author(s):  
Minh-Tan Ha ◽  
Le Van Lich ◽  
Yun-Ji Shin ◽  
Si-Young Bae ◽  
Myung-Hyun Lee ◽  
...  

Silicon carbide (SiC) is an ideal material for high-power and high-performance electronic applications. Top-seeded solution growth (TSSG) is considered as a potential method for bulk growth of high-quality SiC single crystals from the liquid phase source material. The crystal growth performance, such as growth rate and uniformity, is driven by the fluid flow and constitutional flux in the solution. In this study, we numerically investigate the contribution of the external static magnetic field generated by Helmholtz coils to the fluid flow in the silicon melt. Depending on the setup of the Helmholtz coils, four static magnetic field distributions are available, namely, uniform vertical upward/downward and vertical/horizontal cusp. Based on the calculated carbon flux coming to the crystal surface, the vertical downward magnetic field proved its ability to enhance the growth rate as well as the uniformity of the grown crystal.


2020 ◽  
Vol 128 (8) ◽  
pp. 1198
Author(s):  
A. Kvitsinskiy ◽  
P. Demchenko ◽  
E. Litvinov ◽  
M. Masyukov ◽  
I. Anoshkin ◽  
...  

Terahertz time-domain spectroscopic polarimetry (THz-TDSP) method was used to study of polarization properties of a randomly oriented single-walled carbon nanotube (SWCNT) thin film on a high resistivity monocrystalline silicon (Si) substrate in terahertz (THz) frequency range under an external optical pumping and an external static magnetic field. Frequency dependencies of azimuth and ellipticity angles of a polarization ellipse and the polarization ellipse at various frequencies of the electromagnetic waves transmitted through the Si substrate and the SWCNT on the Si substrate were obtained experimentally based on the system of the Stokes parameters. The results of the study of this magneto-optically tunable structure confirm the fact that, based on the Faraday effect in the SWCNT, it is possible to devise efficient tunable THz polarization modulators for use in physics, chemistry, medicine, and the latest security and telecommunication systems.


2018 ◽  
Vol 4 (1) ◽  
pp. 457-459
Author(s):  
Michael Fink ◽  
Stefan Lyer ◽  
Christoph Alexiou ◽  
Helmut Ermert

AbstractResearch in biomedical nanotechnology led already to a variety of applications of nanoparticles in diagnosis as well as in therapy. One of these medical applications is Magnetic Drug Targeting, a promising cancer treatment technique. The aim of this medical attendance is a local chemotherapeutic treatment of the cancerous tissue. For this purpose, chemotherapeutic drugs are bound to magnetic nanoparticles and accumulated in the tumor area by means of an external static magnetic field. Hereby, a well-defined particle concentration in the cancerous tissue requires monitoring of the particle accumulation. Therefore, we present an ultrasound imaging technique that is capable of detecting quantitatively the concentration of iron oxide nanoparticles in biological tissue. The evaluation is based on the variation of the speed of sound of an induced shear wave with respect to the particle concentration.


Sign in / Sign up

Export Citation Format

Share Document