Long-term effect of sediment laden Yellow River irrigation water on soil organic carbon stocks in Ningxia, China

2015 ◽  
Vol 145 ◽  
pp. 148-156 ◽  
Author(s):  
Linlin Dong ◽  
Dongsheng Yu ◽  
Haidong Zhang ◽  
Mingli Zhang ◽  
Wenhao Jin ◽  
...  
2011 ◽  
Vol 114 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Marco Mazzoncini ◽  
Tek Bahadur Sapkota ◽  
Paolo Bàrberi ◽  
Daniele Antichi ◽  
Rosalba Risaliti

2014 ◽  
Vol 36 (4) ◽  
pp. 359 ◽  
Author(s):  
D. E. Allen ◽  
P. M. Bloesch ◽  
R. A. Cowley ◽  
T. G. Orton ◽  
J. E. Payne ◽  
...  

Fire and grazing are commonplace in Australian tropical savannas and the effects of these management practices on soil organic carbon stocks (SOC) is not well understood. A long-term (20 years) experiment studying the effects of fire on a grazed semi-arid tropical savanna was used to increase this understanding. Treatments, including frequency of fire (every 2, 4 and 6 years), season of fire [early (June) vs late (October) dry season] and unburnt control plots, were imposed on Vertosol grassland and Calcarosol woodland sites, which were grazed. Additionally long-term enclosures [unburnt (except the Calcarosol in 2001) and ungrazed since 1973] on each soil type adjacent to each site were sampled, although not included in statistical analyses. SOC stocks were measured to a soil depth of 0.3 m using a wet oxidation method (to avoid interference by carbonates) and compared on an equivalent soil mass basis. Significant treatment differences in SOC stocks were tested for, while accounting for spatial background variation within each site. SOC stocks (0–0.3 m soil depth) ranged between 10.1 and 28.9 t ha–1 (Vertosol site) and 20.7 and 54.9 t ha–1 (Calcarosol site). There were no consistent effects of frequency or season of fire on SOC stocks, possibly reflecting the limited statistical power of the study and inherent spatial variability observed. Differences in the response to frequency and season of fire observed between these soils may have been due to differences in clay type, plant species composition and/or preferential grazing activity associated with fire management. There may also have been differences in C input between treatments and sites due to differences in the herbage mass and post-fire grazing activity on both sites and changed pasture composition, higher herbage fuel load, and a reduction in woody cover on the Vertosol site. This study demonstrated the importance of accounting for background spatial variability and treatment replication (in the absence of baseline values) when assessing SOC stocks in relation to management practices. Given the absence of baseline SOC values and the potentially long period required to obtain changes in SOC in rangelands, modelling of turnover of SOC in relation to background spatial variability would enable management scenarios to be considered in relation to landscape variation that may be unrelated to management. These considerations are important for reducing uncertainty in C-flux accounting and to provide accurate and cost-effective methods for land managers considering participation in the C economy.


2012 ◽  
Vol 175 (5) ◽  
pp. 681-688 ◽  
Author(s):  
Cherukumalli Srinivasarao ◽  
Bandi Venkateswarlu ◽  
Anil Kumar Singh ◽  
Kanuparthy Pandu Ranga Vittal ◽  
Sumanta Kundu ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mike J. Badzmierowski ◽  
Gregory K. Evanylo ◽  
W. Lee Daniels ◽  
Kathryn C. Haering

Abstract Background Human wastewater biosolids, hereafter referred to as biosolids, are produced in significant quantities around the world and often applied to an extensive land mass including agricultural fields, forests, mine lands, and urban areas. Land-application of biosolids has been reported in peer-reviewed and non-peer-reviewed work to change soil organic carbon stocks in varying amounts. Determining the potential of soil organic carbon (SOC) stock change and sequestration from biosolids land application is critical for biosolids producers and users to gain access to carbon credit markets. Our review question is, "what is the impact of biosolids application on long-term soil carbon sequestration rates?” We look to explore this main question with the follow-up, "does biosolids processing methods and characteristics, application method, soil properties, land management and other modifiers affect rates of carbon accumulation from land-applied biosolids?" Methods Searches will be conducted using online databases (i.e., Web of Science Core Collection, CAB Abstracts, Scopus, ProQuest Dissertations & Theses Global), search engines (Google Scholar and Microsoft Academic), and specialist websites to find primary field studies and grey literature of biosolids land-application effects on soil organic carbon stocks. We will use English search terms and predefined inclusion criteria of: (1) a field study of at least 24 months that reports soil organic carbon/matter (SOC/SOM) concentrations/stocks; (2) has two types of treatments: (i) a control (non-intervention AND/OR synthetic fertilizer) AND (ii) a biosolids-based amendment; and (3) information of amendment properties and application dates and rates to estimate the relative contribution of the applied materials to SOC changes. We will screen results in two stages: (1) title and abstract and (2) full text. A 10% subset will be screened by two reviewers for inclusion at the title and abstract level and use a kappa analysis to ensure agreement of at least 0.61. All results in the full text stage will be dual screened. Data will be extracted by one person and reviewed by a second person. Critical appraisal will be used to assess studies’ potential bias and done by two reviewers. A meta-analysis using random effects models will be conducted if sufficient data of high enough quality are extracted.


Sign in / Sign up

Export Citation Format

Share Document