Reduction in interfacial tension of water–oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation

2016 ◽  
Vol 111 ◽  
pp. 171-178 ◽  
Author(s):  
Bing Liu ◽  
Junqin Shi ◽  
Muhan Wang ◽  
Jun Zhang ◽  
Baojiang Sun ◽  
...  
2021 ◽  
Vol 874 ◽  
pp. 13-19
Author(s):  
Mia Ledyastuti ◽  
Joseph Jason ◽  
Reza Aditama

Interfacial tension is an important parameter in enhanced oil recovery (EOR). The interaction between water and oil phase is a determinant factor of the interfacial tension. The interfacial tension changes if another component is added to the water-oil system. This study investigates the effect of adding nanocellulose to the water-oil system. To determine the molecular interactions that occur, a molecular dynamics simulation was carried out using the GROMACS-2018 software. The simulation shows that addition of nanocellulose slightly decreases the water-oil interface tension. Further, based on the density profile, nanocellulose may act as an emulsifier due to its geometric position in the water-oil interface. This is similar to asphaltene, which is a natural emulsifier in crude oil. The nanocellulose performs better in the presence of 1% NaCl as compared to pure water.


2018 ◽  
Vol 39 (2) ◽  
pp. 101-106
Author(s):  
Cut Nanda Sari ◽  
Usman Usman ◽  
Rukman Hertadi ◽  
Tegar Nurwahyu Wijaya ◽  
Leni Herlina ◽  
...  

Peptides and their derivatives can be applied in enhanced oil recovery (EOR) due to their ability to form an emulsion with hydrophobic molecules. However, peptide research for EOR application, either theoretical or computational studies, is still limited. The purpose of this research is to analyse the potency of the X6D model of surfactant peptide for EOR by molecular dynamics simulations in oil-water interface. Molecular dynamics simulation using GROMACS Software with Martini force field can assess a peptides ability for self-assembly and emulsification on a microscopic scale. Molecular dynamics simulations combined with coarse grained models will give information about the dynamics of peptide molecules in oil-water interface and the calculation of interfacial tension value. Four designs of X6D model: F6D, L6D, V6D, and I6D are simulated on the oil-water interface. The value of interfacial tension from simulation show the trend of F6D L6D I6D V6D. The results indicate that V6D has the greatest reduction in interfacial tension and has the stability until 90C with the salinity of at least 1M NaCl.


2018 ◽  
Author(s):  
Khoa Bui ◽  
I. Yucel Akkutlu ◽  
Andrei S. Zelenev ◽  
W. A. Hill ◽  
Christian Griman ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2248 ◽  
Author(s):  
Katarzyna Janicka ◽  
Piotr Beldowski ◽  
Tomasz Majewski ◽  
Wieslaw Urbaniak ◽  
Aneta D. Petelska

In this paper, we explain the amphoteric character of the cartilage surface by studying a lipid bilayer model built from phospholipids. We examined the interfacial tension values and molecular dynamics simulation in solutions of varying pH. The effects of negative and positive charge density (or fixed charges) on the (cartilage/cartilage) friction coefficient were investigated. In physiological (or synovial) fluid, after the isoelectric point (pI), the curve of interfacial tension decreases rapidly as it reaches pH 7.4 and then approaches a constant value at higher pH. It was shown that the curve of the interfacial tension curve exhibits a maximum value at the isoelectric point with a Gaussian shape feature. The phospholipid bilayers facilitate an almost frictionless contact in the joint. Moreover, the slippage of the bilayer and the short-range repulsion between the surfaces of the negatively charged cartilage surfaces are the main determinants of the low frictional properties of the joint.


Sign in / Sign up

Export Citation Format

Share Document