scholarly journals IN SILICO POTENTIAL ANALYSIS OF X6D MODEL OF PEPTIDE SURFACTANT FOR ENHANCED OIL RECOVERY

2018 ◽  
Vol 39 (2) ◽  
pp. 101-106
Author(s):  
Cut Nanda Sari ◽  
Usman Usman ◽  
Rukman Hertadi ◽  
Tegar Nurwahyu Wijaya ◽  
Leni Herlina ◽  
...  

Peptides and their derivatives can be applied in enhanced oil recovery (EOR) due to their ability to form an emulsion with hydrophobic molecules. However, peptide research for EOR application, either theoretical or computational studies, is still limited. The purpose of this research is to analyse the potency of the X6D model of surfactant peptide for EOR by molecular dynamics simulations in oil-water interface. Molecular dynamics simulation using GROMACS Software with Martini force field can assess a peptides ability for self-assembly and emulsification on a microscopic scale. Molecular dynamics simulations combined with coarse grained models will give information about the dynamics of peptide molecules in oil-water interface and the calculation of interfacial tension value. Four designs of X6D model: F6D, L6D, V6D, and I6D are simulated on the oil-water interface. The value of interfacial tension from simulation show the trend of F6D L6D I6D V6D. The results indicate that V6D has the greatest reduction in interfacial tension and has the stability until 90C with the salinity of at least 1M NaCl.

RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13008-13017 ◽  
Author(s):  
Jun Liu ◽  
Haixiao Wan ◽  
Huanhuan Zhou ◽  
Yancong Feng ◽  
Liqun Zhang ◽  
...  

The formation mechanism of the bound rubber in elastomer nanocomposites using the coarse-grained molecular-dynamics simulations.


2017 ◽  
Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.


Particuology ◽  
2019 ◽  
Vol 44 ◽  
pp. 36-43 ◽  
Author(s):  
Ying Ren ◽  
Qiang Zhang ◽  
Ning Yang ◽  
Ji Xu ◽  
Jialin Liu ◽  
...  

Soft Matter ◽  
2017 ◽  
Vol 13 (35) ◽  
pp. 5991-5999 ◽  
Author(s):  
Toshiki Mima ◽  
Tomoyuki Kinjo ◽  
Shunsuke Yamakawa ◽  
Ryoji Asahi

The conformation of polyelectrolyte aggregates as a function of the backbone rigidity is investigated by coarse-grained molecular dynamics simulation.


2019 ◽  
Vol 21 (38) ◽  
pp. 21615-21625 ◽  
Author(s):  
Naveed Athir ◽  
Ling Shi ◽  
Sayyed Asim Ali Shah ◽  
Zhiyu Zhang ◽  
Jue Cheng ◽  
...  

Coarse-grained (CG) molecular dynamics simulations have been employed to study the thermo-mechanical response of a physically cross-linked network composed of zwitterionic moieties and fully flexible elastomeric polymer chains.


2010 ◽  
Vol 114 (28) ◽  
pp. 12151-12157 ◽  
Author(s):  
R. J. K. Udayana Ranatunga ◽  
Robert J. B. Kalescky ◽  
Chi-cheng Chiu ◽  
Steven O. Nielsen

Sign in / Sign up

Export Citation Format

Share Document