Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy

2020 ◽  
Vol 381 ◽  
pp. 125214 ◽  
Author(s):  
Shuaixing Wang ◽  
Xiaohui Liu ◽  
Xiaole Yin ◽  
Nan Du
Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 272 ◽  
Author(s):  
Quanzhi Chen ◽  
Weizhou Li ◽  
Kui Ling ◽  
Ruixia Yang

The aluminum–titanium (Al-Ti) double-layer composite plate is a promising composite material, but necessary surface protection was required before its application. In this paper, plasma electrolytic oxidation (PEO) was employed to fabricate a ceramic coating on the surface of a Al-Ti double-layer composite plate. To investigate the coating growth mechanism on the Al-Ti double-layer composite plate, a single-Al plate and a single-Ti plate were introduced for comparison experiments. Results showed that, the composite of Al and Ti accelerated the coating growth rate on the part-Ti portion of the composite plate, and that of the part-Al portion was decreased. Electrochemical impedance spectroscopy analysis indicated that the equivalent circuit of the Al-Ti coating was formed by connecting two different circuits in parallel. The reaction behavior revealed that the electric energy during the PEO would leak from the circuit with the weaker blocking effect, and confirmed that the electric energy distribution followed the law of low-resistance distribution. Finally, the mechanism was extended to the PEO treatment on general metal matrix composites to broaden the application theory of the technology.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document