3D surface morphology and performance of TC17 processed by surface severe plastic deformation

2020 ◽  
Vol 397 ◽  
pp. 125995
Author(s):  
C. Yang ◽  
M.Q. Li
Author(s):  
Liu Chenang ◽  
Wang Rongxuan ◽  
Zhenyu Kong ◽  
Babu Suresh ◽  
Joslin Chase ◽  
...  

Layer-wise 3D surface morphology information is critical for the quality monitoring and control of additive manufacturing (AM) processes. However, most of the existing 3D scan technologies are either contact or time consuming, which are not capable of obtaining the 3D surface morphology data in a real-time manner during the process. Therefore, the objective of this study is to achieve real-time 3D surface data acquisition in AM, which is achieved by a supervised deep learning-based image analysis approach. The key idea of this proposed method is to capture the correlation between 2D image and 3D point cloud, and then quantify this relationship by using a deep learning algorithm, namely, convolutional neural network (CNN). To validate the effectiveness and efficiency of the proposed method, both simulation and real-world case studies were performed. The results demonstrate that this method has strong potential to be applied for real-time surface morphology measurement in AM, as well as other advanced manufacturing processes.


2016 ◽  
Vol 863 ◽  
pp. 8-13
Author(s):  
Peter Olegovich Rusinov ◽  
Zhesfina Michailovna Blednova

The study contains a complex method of forming the surface-modified layers using materials with shape memory effect by high-speed gas-flame spraying of mechanically activated powders based on TiNiHf, followed by thermal and thermomechanical treatment. This allowed us to form the nanoscale state in the surface layers, which have high levels of functional, mechanical and performance properties. We demonstrated that pre-mechanoactivation of TiNiHf powder has reduced the coatings' porosity (less than 1%) and provided adhesive strength of the coating with the substrate (110 to 120 MPa). We described the formation mechanism of nanostructured state in TiNiHf powders under severe plastic deformation during mechanical activation, comprising the steps of high-speed deformation, polygonization and recrystallization.


Sign in / Sign up

Export Citation Format

Share Document