Improvement of selective laser melting substrate surface performance via combined processing of jet electrochemical machining and jet electrodeposition

Author(s):  
Haixia Cheng ◽  
Bowen Xu ◽  
Deqiao Xie ◽  
Youwen Yang ◽  
Lida Shen ◽  
...  
Author(s):  
Haixia Cheng ◽  
Bowen Xu ◽  
Jianfeng Zhao ◽  
Mingbo Qiu ◽  
Guibin Lou ◽  
...  

Selective laser melting (SLM) is an important method in additive manufacturing. SLM has obvious advantages for the fabrication of metal parts with complex structure that cannot be processed directly and are manufactured in relatively low amounts. However, the surfaces of the SLM-formed parts contain more adhesive particles and pores than those manufactured by traditional methods, leading to the poor corrosion resistance of the parts and preventing the widespread use of SLM. To solve these problems, jet electrochemical machining and jet electrodeposition combined processing techniques were investigated for the treatment of the substrate surface in this work. Jet electrochemical machining was used to remove the surface defects of the SLM-formed parts, and the results were compared with the traditional sandblasting and sandpaper grinding surface treatment methods. Then, the nickel coating was deposited on the surface of the SLM-formed parts using jet electrodeposition to protect the surface and extend the service life of the parts. The mechanisms of the different processing techniques were analyzed, and properties such as the substrate morphology, coating morphology, corrosion resistance of the coating, and adhesion of the coating were compared. The results show that holes, adhesive particles and other defects are still present on the substrate surface after sandpaper grinding and sandblasting and affect the quality of the nickel coating. After electrochemical machining, the SLM surface defects were almost completely removed, forming a uniform microporous structure that interlocked with the nickel coating. The coating was smooth and dense and showed the best corrosion resistance and binding force. In 3.5 wt% NaCl solution, the corrosion potential reached −0.196 V, and the maximum binding force reached 35 N.


Author(s):  
Tatsuaki Furumoto ◽  
Kyota Egashira ◽  
Kazushi Oishi ◽  
Satoshi Abe ◽  
Yohei Hashimoto ◽  
...  

Abstract The quality of built parts by selective laser melting (SLM) relies on the comprehension of the phenomena that takes place during the melting and solidification of the metal powder. The scattering of spatter particle as liquid metal during SLM process affects the layer consolidation of powder bed in addition to the surface quality of built part. The present study is focused on the spatter particle behaviour of maraging steel during SLM to achieve a thorough understanding of the phenomena that occur during the melting and fusing of the metal powder. The spatter particles are tracked using high speed imaging, and the effects of the process parameters on the spatter particle behaviour are investigated. The spatter particles ejected from the melt pool are also physically and chemically evaluated. The results showed that the spatter particles were classified as being spherical or satellite types, according to their scattered volumes; some spatter particles were larger than the particles in the initial metal powder. Most spatter particles were ejected from the droplet formed around the melt pool and from the melted powder in front of the melt pool; the number of spatter particles ejected from the melt pool was relatively low. The surface roughness affected the generation locations and tracks of the spatter particles, and the substrate surface wettability was the principal factor affecting the spatter particle behaviour.


Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

Author(s):  
M.A. Kaplan ◽  
◽  
М.A. Smirnov ◽  
A.A. Kirsankin ◽  
M.A. Sevostyanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document