Hexagonal boron nitride (h-BN) nanosheet as a potential hydrogen adsorption material: A density functional theory (DFT) study

2021 ◽  
Vol 24 ◽  
pp. 101043
Author(s):  
B. Chettri ◽  
P.K. Patra ◽  
Nguyen N. Hieu ◽  
D.P. Rai
2020 ◽  
Vol 22 (6) ◽  
pp. 3304-3313
Author(s):  
Muhammad Isa Khan ◽  
Abdul Majid ◽  
Naveed Ashraf ◽  
Irslan Ullah

In order to search for a new anode material for lithium-ion batteries (LIBs), a borophene/boron nitride (B/BN) interface was investigated in detail using density functional theory.


2015 ◽  
Vol 51 (12) ◽  
pp. 2440-2443 ◽  
Author(s):  
Claudius Morchutt ◽  
Jonas Björk ◽  
Sören Krotzky ◽  
Rico Gutzler ◽  
Klaus Kern

Polymerization of 1,3,5-tris(4-bromophenyl)benzene on graphene and hexagonal boron nitride is investigated by scanning tunnelling microscopy and density functional theory.


2020 ◽  
Vol 22 (4) ◽  
pp. 2566-2579 ◽  
Author(s):  
H. Abdelsalam ◽  
W. O. Younis ◽  
V. A. Saroka ◽  
N. H. Teleb ◽  
S. Yunoki ◽  
...  

The electronic and adsorption properties of chemically modified square hexagonal boron nitride quantum dots are investigated using density functional theory calculations.


2019 ◽  
Vol 4 (2) ◽  
pp. 72-79
Author(s):  
B. Chettri ◽  
P. K. Patra ◽  
Sunita Srivastava ◽  
Lalhriatzuala ◽  
Lalthakimi Zadeng ◽  
...  

In this work, we have constructed the hydrogenated hexagonal boron nitride (h-BN) by placing hydrogen atom at different surface sites. The possibility of hydrogen adsorption on the BN surface has been estimated by calculating the adsorption energy. The electronic properties were calculated for different hydrogenated BNs. The theoretical calculation was based on the Density Functional Theory (DFT). The electron-exchange energy was treated within the most conventional functional called generalized gradient approximation. The calculated band gap of pure BN is 3.80 eV. The adsorption of two H-atoms at two symmetrical sites of B and N sites reduces the band gap value to 3.5 eV. However, in all other combination the systems show dispersed band at the Fermi level exhibiting conducting behavior. Moreover, from the analysis of band structure and Density Of States we can conclude that, the hydrogenation tunes the band gap of hexagonal boron nitride.


Sign in / Sign up

Export Citation Format

Share Document