scholarly journals PORATALTuning the Product Selectivity of Single-Atom Alloys by Active Site Modification

2021 ◽  
pp. 121990
Author(s):  
Ryan T. Hannagan ◽  
Yicheng Wang ◽  
Romain Réocreux ◽  
Julia Schumann ◽  
Michail Stamatakis ◽  
...  
2018 ◽  
Vol 9 (27) ◽  
pp. 5890-5896 ◽  
Author(s):  
Yingxin Feng ◽  
Linsen Zhou ◽  
Qiang Wan ◽  
Sen Lin ◽  
Hua Guo

The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene.


2021 ◽  
Author(s):  
Jiawei Zhu ◽  
Shichun Mu

Owing to the advantage of atomic utilization, the single-atom catalyst has attracted much attention and been employed in multifarious catalytic reactions. Their definite site configuration is favorable for exploring the...


2019 ◽  
Vol 21 (40) ◽  
pp. 22598-22610 ◽  
Author(s):  
Nan Zhang ◽  
Fuyi Chen ◽  
Longfei Guo

We demonstrate for the first time that the Pd1Ag single-atom alloys exhibit a high catalytic activity for formate oxidation reaction.


Author(s):  
Mohammed J. Islam ◽  
Marta Granollers Mesa ◽  
Amin Osatiashtiani ◽  
Jinesh C. Manayil ◽  
Mark A. Isaacs ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyuan Lyu ◽  
Shichao Ding ◽  
Maoyu Wang ◽  
Xiaoqing Pan ◽  
Zhenxing Feng ◽  
...  

AbstractFe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.


2018 ◽  
Vol 149 (22) ◽  
pp. 224701 ◽  
Author(s):  
Nick Gerrits ◽  
Davide Migliorini ◽  
Geert-Jan Kroes

2020 ◽  
Author(s):  
Abigale Monasterial ◽  
Calla Hinderks ◽  
Songkun Viriyavaree ◽  
Matthew Montemore

<div> <div> <div> <p>Single-atom alloys can be effective catalysts and have been compared to supported single-atom catalysts. To rationally design single-atom alloys and other surfaces with localized ensembles, it is crucial to understand variations in reactivity when varying the dopant and the ensemble size. Here, we examined hydrogen adsorption on surfaces embedded with localized clusters and discovered general trends. Counterintuitively, increasing the amount of a more reactive metal sometimes makes a surface site less reactive. This behavior is due to the localized electronic states in many of these surfaces, making them similar to free-standing nanoclusters. Further, single-atom alloys have qualitatively different behavior than larger ensembles. Specifically, the adsorption energy is U-shaped when plotted against the dopant’s group for single atom alloys. Additionally, adsorption energies on single atom alloys correlate more strongly with the dopant’s p-band center than the d-band center. </p> </div> </div> </div>


Nano Energy ◽  
2022 ◽  
Vol 93 ◽  
pp. 106819
Author(s):  
Feng Li ◽  
Gao-Feng Han ◽  
Yunfei Bu ◽  
Shanshan Chen ◽  
Ishfaq Ahmad ◽  
...  

ACS Catalysis ◽  
2022 ◽  
pp. 971-981
Author(s):  
Shaowei Yang ◽  
Chen Wu ◽  
Jinhui Wang ◽  
Haidong Shen ◽  
Kai Zhu ◽  
...  
Keyword(s):  

2019 ◽  
Vol 123 (16) ◽  
pp. 10419-10428 ◽  
Author(s):  
Matthew T. Darby ◽  
Felicia R. Lucci ◽  
Matthew D. Marcinkowski ◽  
Andrew J. Therrien ◽  
Angelos Michaelides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document