Hardware acceleration of the Tate pairing on a genus 2 hyperelliptic curve

2007 ◽  
Vol 53 (2-3) ◽  
pp. 85-98 ◽  
Author(s):  
Robert Ronan ◽  
Colm ó hÉigeartaigh ◽  
Colin Murphy ◽  
Michael Scott ◽  
Tim Kerins
2010 ◽  
Vol 47 (1) ◽  
pp. 31-65 ◽  
Author(s):  
Michael J. Jacobson ◽  
Renate Scheidler ◽  
Andreas Stein

Abstract In this paper, we give an overview of cryptographic applications using real hyperelliptic curves. We review previously proposed cryptographic protocols and discuss the infrastructure of a real hyperelliptic curve, the mathematical structure underlying all these protocols. We then describe recent improvements to infrastructure arithmetic, including explicit formulas for divisor arithmetic in genus 2, and advances in solving the infrastructure discrete logarithm problem, whose presumed intractability is the basis of security for the related cryptographic protocols.


ETRI Journal ◽  
2015 ◽  
Vol 37 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Hamid-Reza Ahmadi ◽  
Ali Afzali-Kusha ◽  
Massoud Pedram ◽  
Mahdi Mosaffa

2014 ◽  
Vol 17 (A) ◽  
pp. 257-273 ◽  
Author(s):  
David Harvey ◽  
Andrew V. Sutherland

AbstractWe present an efficient algorithm to compute the Hasse–Witt matrix of a hyperelliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C/\mathbb{Q}$ modulo all primes of good reduction up to a given bound $N$, based on the average polynomial-time algorithm recently proposed by the first author. An implementation for hyperelliptic curves of genus 2 and 3 is more than an order of magnitude faster than alternative methods for $N = 2^{26}$.


1936 ◽  
Vol 32 (3) ◽  
pp. 342-354 ◽  
Author(s):  
H. F. Baker

In 1907 Enriques and Severi published an extensive and fascinating account of hyperelliptic surfaces. In general a hyperelliptic surface is that expressed by the necessary relation connecting three meromorphic functions of two variables which have four columns of periods. Such functions arise naturally by associating the two variables, in accordance with Jacobi's inversion problem for hyperelliptic integrals of genus 2, with a pair of points of a hyperelliptic curve. When the primitive periods of the functions are those arising for the curve, and the set of three functions chosen is representative, in the sense that only one pair of (incongruent) values of the variables arises for given values of the functions, the surface is called by Enriques and Severi a Jacobian surface; but, if several sets of (incongruent) values of the variables arise for given values of the functions, say r sets, the surface is said to be of rank r. For example, when the three functions are all even, to each set of values of these there belong not only the values u, v of the variables, but also the values −u, − v, and r is thus even, being 2 at least, as in the case of the Kummer surface. In the paper referred to, many cases in which r > 1, corresponding to particular hyperelliptic curves possessing involutions of order r, are worked out. In general the method followed consists in arguing, from the character of the associated group of order r, to the character and equation of the hyperelliptic surface Φ of rank r; and from this the Jacobian surface F is inferred upon which there exists an involution of sets of r points, the surface Φ being the representation of this involution. The argumentation is always beautiful, but often not very brief. The hyperelliptic surfaces for which the primitive periods of the functions are not those of a hyperelliptic curve are also shown in the paper to arise from involutions on the Jacobian surface; with these I am not here concerned.


Sign in / Sign up

Export Citation Format

Share Document