scholarly journals Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time

2014 ◽  
Vol 17 (A) ◽  
pp. 257-273 ◽  
Author(s):  
David Harvey ◽  
Andrew V. Sutherland

AbstractWe present an efficient algorithm to compute the Hasse–Witt matrix of a hyperelliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C/\mathbb{Q}$ modulo all primes of good reduction up to a given bound $N$, based on the average polynomial-time algorithm recently proposed by the first author. An implementation for hyperelliptic curves of genus 2 and 3 is more than an order of magnitude faster than alternative methods for $N = 2^{26}$.

2007 ◽  
Vol 17 (02) ◽  
pp. 289-328 ◽  
Author(s):  
LAURA CIOBANU

We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism ϕ of F sending W to U. This work analyzes an approach due to Edmunds and improved by Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two-generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.


2011 ◽  
Vol 22 (05) ◽  
pp. 1197-1209 ◽  
Author(s):  
YO-SUB HAN ◽  
KAI SALOMAA

Solid codes have a nice property called synchronization property, which is useful in data transmission. The property is derived from infix-freeness and overlap-freeness of solid codes. Since a code is a language, we look at solid codes from formal language viewpoint. In particular, we study regular solid codes (that are solid codes and regular). We first tackle the solid code decidability problem for regular languages and propose a polynomial time algorithm. We, then, investigate the decidability of the overlap-freeness property and show that it is decidable for regular languages but is undecidable for context-free languages. Then, we study the prime solid code decomposition of regular solid codes and propose an efficient algorithm for the prime solid code decomposition problem. We also demonstrate that a solid code does not always have a unique prime solid code decomposition.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Sign in / Sign up

Export Citation Format

Share Document