A comparison of asbestos fiber potency and elongate mineral particle (EMP) potency for mesothelioma in humans

2019 ◽  
Vol 371 ◽  
pp. 1-2 ◽  
Author(s):  
Murray Martin Finkelstein
2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

2000 ◽  
Vol 12 (sup3) ◽  
pp. 411-418 ◽  
Author(s):  
Bruce W. Case ◽  
André Dufresne ◽  
A.D. McDonald ◽  
J.C. McDonald ◽  
Patrick Sébastien
Keyword(s):  

2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


1995 ◽  
Vol 50 (4) ◽  
pp. 320-325 ◽  
Author(s):  
Yoshihiro Murai ◽  
Masanobu Kitagawa ◽  
Kazuhiro Matsui ◽  
Fumitomo Koizumi ◽  
Atsuo Miwa

2015 ◽  
Vol 12 (16) ◽  
pp. 4861-4874 ◽  
Author(s):  
E. M. Stacy ◽  
S. C. Hart ◽  
C. T. Hunsaker ◽  
D. W. Johnson ◽  
A. A. Berhe

Abstract. Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual sediment composition and yield, for water years 2005–2011, from eight catchments in the southern part of the Sierra Nevada, California. Sediment was compared to soil at three different landform positions from the source slopes to determine if there is selective transport of organic matter or different mineral particle size classes. Sediment export varied from 0.4 to 177 kg ha−1, while export of C in sediment was between 0.025 and 4.2 kg C ha−1 and export of N in sediment was between 0.001 and 0.04 kg N ha−1. Sediment yield and composition showed high interannual variation. In our study catchments, erosion laterally mobilized OM-rich litter material and topsoil, some of which enters streams owing to the catchment topography where steep slopes border stream channels. Annual lateral sediment export was positively and strongly correlated with stream discharge, while C and N concentrations were both negatively correlated with stream discharge; hence, C : N ratios were not strongly correlated to sediment yield. Our results suggest that stream discharge, more than sediment source, is a primary factor controlling the magnitude of C and N export from upland forest catchments. The OM-rich nature of eroded sediment raises important questions about the fate of the eroded OM. If a large fraction of the soil organic matter (SOM) eroded from forest ecosystems is lost during transport or after deposition, the contribution of forest ecosystems to the erosion-induced C sink is likely to be small (compared to croplands and grasslands).


1976 ◽  
Vol 271 (1) ◽  
pp. 345-352 ◽  
Author(s):  
John M. Dement ◽  
Ralph D. Zumwalde ◽  
Kenneth M. Wallingford

Sign in / Sign up

Export Citation Format

Share Document