Involvement of PML-I in reformation of PML nuclear bodies in acute promyelocytic leukemia cells by leptomycin B

2019 ◽  
Vol 384 ◽  
pp. 114775 ◽  
Author(s):  
Chao Wang ◽  
Li De Su ◽  
Yi Ming Shao ◽  
Wei Zhong Chen ◽  
Na Bu ◽  
...  
Blood ◽  
1997 ◽  
Vol 90 (10) ◽  
pp. 4046-4053 ◽  
Author(s):  
Brunangelo Falini ◽  
Leonardo Flenghi ◽  
Marta Fagioli ◽  
Francesco Lo Coco ◽  
Iole Cordone ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by a reciprocal 15; 17 chromosomal translocation, which fuses the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes, leading to the expression of the PML/RARα fusion oncoprotein. Immunocytochemical labeling of the wild-type PML protein with the PG-M3 monoclonal antibody (MoAb) directed against the amino terminal portion of the human PML gene product, produces a characteristic nuclear speckled pattern that is due to localization of the protein into discrete dots (5 to 20 per nucleus), named PML nuclear bodies. The architecture of PML nuclear bodies appears to be disrupted in APL cells that bear the t(15; 17), thus resulting in a change of the nuclear staining pattern from speckled (wild-type PML protein) to microgranular (PML-RARα fusion protein). To assess whether the PG-M3 MoAb could assist in the diagnosis of APL (M3), bone marrow and/or peripheral blood samples from 100 cases of acute nonlymphoid leukemias of different subtypes were blindly immunostained with the PG-M3 MoAb, using the immunoalkaline phosphatase (APAAP) or immunofluorescence technique as detection system. Notably, the abnormal (micropunctate) pattern of the PML/RARα fusion protein (usually ≥50 small granules/per nucleus) was observed in APL (M3) samples, but not in other types of acute nonlymphoid leukemias. Immunocytochemical labeling with PG-M3 was particularly useful in the diagnosis of microgranular variant of APL (M3V) (three cases misdiagnosed as M4 and M5), and also to exclude a morphologic misdiagnosis of APL (six of 78 cases). In all cases investigated, immunocytochemical results were in agreement with those of reverse transcription-polymerase chain reaction (RT-PCR) for PML/RARα. Because the epitope identified by PG-M3 is located in the aminoterminal portion of PML (AA 37 to 51), the antibody was suitable for recognizing APL cases characterized by breakpoint occurring at different sites of PML (bcr 1, bcr 2 and bcr 3). In conclusion, immunocytochemical labeling with PG-M3 represents a rapid, sensitive, and highly-specific test for the diagnosis of APL that bears the t(15; 17). This should allow an easy and correct diagnosis of this subtype of acute leukemia to any laboratory provided with a minimal equipment for immunocytochemistry work.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1267-1267
Author(s):  
Katharina Korf ◽  
Harald Wodrich ◽  
Alexander Haschke ◽  
Ron M. Evans ◽  
Thomas M. Sternsdorf

Abstract Although Acute Promyelocytic Leukemia (APL) has become a curable disease due to in-depth understanding of the underlying molecular processes, its investigation has provided unique and valuable insights into the processes involved in leukemogenesis. Therefore we use it as a model disease. 99% of APL-patients express a PML-RAR fusion protein. While involvement of RAR has proven indispensable for oncogenicity, the role of the PML domain is far less clear. In our previous study (Sternsdorf et al., Cancer Cell, 2006) we found that substitution of PML with heterologous self-interaction domains suffices to induce leukemias, but drastically decreases oncogenic potency of the resulting fusion proteins. In this study, we have chosen the inverse strategy: we have modified the PML domain to create a more active artificial model oncoprotein by adapting PR to its biological environment: As the typical model organism for APL studies is the mouse, we have replaced the human PML domain with the murine PML domain. This oncoprotein (mPR) creates APL-type leukemias in mice with higher penetrance and shorter latency than its human counterpart, hPR. We have used this system to study immediate early effects of expression of the model oncoprotein. While proliferating murine bone marrow cells go into senescence ex vivo, expression of mPR prevents this and robustly immortalizes murine bone marrow from every mouse strain tested so far. Senescence-associated upregulation of the cell-cycle regulators p21 and p19 was efficiently blocked by mPR expression. In mouse cells, mPR exhibits higher potency in disrupting the PML-associated Daxx/ATRX complex than hPR. Knockdown of ATRX, but not Daxx ameliorated ATRA-induced growth suppression and p21 upregulation in the human APL model cell line NB4. These data suggest, that PML-RAR promotes leukemogenesis by disrupting the Daxx/ATRX complex, which assembles at PML nuclear bodies during the onset of senescence. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


2013 ◽  
Vol 210 (13) ◽  
pp. 2793-2802 ◽  
Author(s):  
Guilherme Augusto dos Santos ◽  
Lev Kats ◽  
Pier Paolo Pandolfi

Acute promyelocytic leukemia (APL) is a hematological malignancy driven by a chimeric oncoprotein containing the C terminus of the retinoic acid receptor-a (RARa) fused to an N-terminal partner, most commonly promyelocytic leukemia protein (PML). Mechanistically, PML-RARa acts as a transcriptional repressor of RARa and non-RARa target genes and antagonizes the formation and function of PML nuclear bodies that regulate numerous signaling pathways. The empirical discoveries that PML-RARa–associated APL is sensitive to both all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), and the subsequent understanding of the mechanisms of action of these drugs, have led to efforts to understand the contribution of molecular events to APL cell differentiation, leukemia-initiating cell (LIC) clearance, and disease eradication in vitro and in vivo. Critically, the mechanistic insights gleaned from these studies have resulted not only in a better understanding of APL itself, but also carry valuable lessons for other malignancies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3721-3721 ◽  
Author(s):  
Eva Moravcsik ◽  
Melanie Joannides ◽  
Edwige Voisset ◽  
Eva Wessel Stratford ◽  
Bernd B. Zeisig ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterised by the t(15;17)(q22;q21) leading to fusion of PML to the gene encoding the myeloid transcription factor Retinoic Acid Receptor α (RARα). Chromosomal translocations such as the t(15;17) are considered to be initiating events in leukemogenesis; however, sequencing of APL genomes has provided further evidence that the PML-RARα fusion is insufficient to induce leukemia, which depends upon the acquisition of cooperating mutations. The PML-RARα oncoprotein exerts a profound effect on nuclear architecture, disrupting multiprotein structures known as PML nuclear bodies (NBs). The function of these structures remains an enigma; however, their disruption in PML-RARα+ APL and acute lymphoblastic leukemia with the t(9;15)(p13;q24)/PAX5-PML fusion is associated with delocalisation of a number of component proteins including PML, which have been implicated in growth control and neoplastic transformation. It is now established that the PML moiety contributes to APL pathogenesis by conferring via the translocation a novel dimerisation capacity to RARα, but it has been unclear whether deregulation of PML and other NB components cooperates in leukemic transformation or impacts the response to differentiating agents. To address these questions, we generated a knock-in mouse model with targeted NB disruption achieved through mutation of key zinc-binding cysteine residues in the amino-terminal RING domain of Pml. Homozygous Pml RING mutant mice are viable, with no overt developmental defect; however, analysis of the bone marrow revealed significant expansion of the Lin(-)Sca-1(+)c-Kit(+) (LSK) population compared to wild type (WT) controls (p<0.01), accompanied by increased LSK cell proliferation (p<0.0001) as evaluated by in vivo labelling through incorporation of 5-ethynyl-2'-deoxyuridine (EdU). In addition, hematopoietic cells derived from homozygous Pml RING mutant mice exhibited markedly elevated levels of DNA damage compared to WT cells from age-matched controls, as evidenced by increased numbers of γH2AX foci (p=0.009). This was associated with significantly delayed DNA damage repair responses in Pml RING mutant cells following γ-irradiation (p=0.005). Accordingly, expression of PML-RARα in human hematopoietic cells, which led to disruption of NBs, also induced a significant increase in γH2AX foci (p=0.0023). While no leukemias arose in homozygous Pml RING mutant mice, they developed an excess of T- and B-cell lymphomas (p=0.03), consistent with the proposed tumour suppressor function of PML and the NBs. Since a key property conferred by the PML moiety required for leukemogenicity of the PML-RARα oncoprotein is the capacity to dimerise, we evaluated whether Pml NB disruption could cooperate with forced RARα homodimerisation (mediated artificially by linking RARα to the p50 dimerisation motif of NFκB). While Pml NB disruption or p50-RARA expressed under the control of the MRP8 promoter in murine hematopoietic stem/progenitor cells conferred limited replating capacity, in combination they exhibited marked cooperativity, with a significant increase in third round colonies (p=0.03). Moreover, NB disruption was found to cooperate with forced RARα homodimerisation in vivo with a doubling in the rate of leukemia development in p50-RARα mice with mutated Pml (p<0.0001), leading to a penetrance comparable to that observed in previously published PML-RARα transgenic models. Moreover, the latency to onset of leukemia was significantly shorter in p50-RARα mice with the Pml RING mutation, occurring from 213 days of age vs 310 days with WT Pml (p=0.008). While Pml NB disruption did not affect engraftment of p50-RARα leukemias in serial transplantation, the in vitro differentiation response of p50-RARα leukemias to All transretinoic acid (ATRA) as determined by nitroblue tetrazolium assay was significantly impaired in the context of NB disruption (p<0.05). Moreover, prolongation of survival following ATRA treatment in mice transplanted with p50-RARα leukemic blasts was dependent upon Pml NB integrity (p=0.03). Overall, these data suggest that the NB disruption mediated by the PML-RARα oncoprotein plays a key role in APL pathogenesis contributing to expansion of the LSK population and defective DNA repair predisposing to the acquisition of cooperating mutations, but also implicate NBs in the response to differentiating agents. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Abstract Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


Sign in / Sign up

Export Citation Format

Share Document