scholarly journals In acute promyelocytic leukemia NB4 cells, the synthetic retinoid CD437 induces contemporaneously apoptosis, a caspase-3-mediated degradation of PML/RARα protein and the PML retargeting on PML-nuclear bodies

Leukemia ◽  
1999 ◽  
Vol 13 (5) ◽  
pp. 739-749 ◽  
Author(s):  
M Giannì ◽  
H de Thé
Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 1045-1061 ◽  
Author(s):  
Luca Mologni ◽  
Isabella Ponzanelli ◽  
Filippo Bresciani ◽  
Gabriele Sardiello ◽  
Daniele Bergamaschi ◽  
...  

Abstract The synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437), which was originally developed as an retinoic acid receptor (RAR)-γ agonist, induces rapid apoptosis in all-trans retinoic acid (ATRA)-sensitive and ATRA-resistant clones of the NB4 cell line, a widely used experimental model of acute promyelocytic leukemia (APL). In addition, the compound is apoptogenic in primary cultures of freshly isolated APL blasts obtained from a newly diagnosed case and an ATRA-resistant relapsed patient. NB4 cells in the S-phase of the cycle are most sensitive to CD437-triggered apoptosis. CD437-dependent apoptosis does not require de novo protein synthesis and activation of RAR-γ or any of the other nuclear retinoic acid receptors. The process is preceded by rapid activation of a caspase-like enzymatic activity capable of cleaving the fluorogenic DEVD but not the fluorogenic YVAD tetrapeptide. Increased caspase activity correlates with caspase-3 and caspase-7 activation. Inhibition of caspases by z-VAD suppresses the nuclear DNA degradation observed in NB4 cells treated with CD437, as well as the degradation of pro–caspase-3 and pro–caspase-7. CD437-dependent activation of caspases is preceded by release of cytochrome c from the mitochondria into the cytosol of treated cells. Leakage of cytochrome c lays upstream of caspase activation, because the phenomenon is left unaffected by pretreatment of NB4 cells with z-VAD. Treatment of APL cells with CD437 is associated with a caspase-dependent degradation of promyelocytic leukemia-RAR-, which can be completely inhibited by z-VAD.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 1045-1061 ◽  
Author(s):  
Luca Mologni ◽  
Isabella Ponzanelli ◽  
Filippo Bresciani ◽  
Gabriele Sardiello ◽  
Daniele Bergamaschi ◽  
...  

The synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437), which was originally developed as an retinoic acid receptor (RAR)-γ agonist, induces rapid apoptosis in all-trans retinoic acid (ATRA)-sensitive and ATRA-resistant clones of the NB4 cell line, a widely used experimental model of acute promyelocytic leukemia (APL). In addition, the compound is apoptogenic in primary cultures of freshly isolated APL blasts obtained from a newly diagnosed case and an ATRA-resistant relapsed patient. NB4 cells in the S-phase of the cycle are most sensitive to CD437-triggered apoptosis. CD437-dependent apoptosis does not require de novo protein synthesis and activation of RAR-γ or any of the other nuclear retinoic acid receptors. The process is preceded by rapid activation of a caspase-like enzymatic activity capable of cleaving the fluorogenic DEVD but not the fluorogenic YVAD tetrapeptide. Increased caspase activity correlates with caspase-3 and caspase-7 activation. Inhibition of caspases by z-VAD suppresses the nuclear DNA degradation observed in NB4 cells treated with CD437, as well as the degradation of pro–caspase-3 and pro–caspase-7. CD437-dependent activation of caspases is preceded by release of cytochrome c from the mitochondria into the cytosol of treated cells. Leakage of cytochrome c lays upstream of caspase activation, because the phenomenon is left unaffected by pretreatment of NB4 cells with z-VAD. Treatment of APL cells with CD437 is associated with a caspase-dependent degradation of promyelocytic leukemia-RAR-, which can be completely inhibited by z-VAD.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Abstract Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


Blood ◽  
1997 ◽  
Vol 90 (10) ◽  
pp. 4046-4053 ◽  
Author(s):  
Brunangelo Falini ◽  
Leonardo Flenghi ◽  
Marta Fagioli ◽  
Francesco Lo Coco ◽  
Iole Cordone ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by a reciprocal 15; 17 chromosomal translocation, which fuses the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes, leading to the expression of the PML/RARα fusion oncoprotein. Immunocytochemical labeling of the wild-type PML protein with the PG-M3 monoclonal antibody (MoAb) directed against the amino terminal portion of the human PML gene product, produces a characteristic nuclear speckled pattern that is due to localization of the protein into discrete dots (5 to 20 per nucleus), named PML nuclear bodies. The architecture of PML nuclear bodies appears to be disrupted in APL cells that bear the t(15; 17), thus resulting in a change of the nuclear staining pattern from speckled (wild-type PML protein) to microgranular (PML-RARα fusion protein). To assess whether the PG-M3 MoAb could assist in the diagnosis of APL (M3), bone marrow and/or peripheral blood samples from 100 cases of acute nonlymphoid leukemias of different subtypes were blindly immunostained with the PG-M3 MoAb, using the immunoalkaline phosphatase (APAAP) or immunofluorescence technique as detection system. Notably, the abnormal (micropunctate) pattern of the PML/RARα fusion protein (usually ≥50 small granules/per nucleus) was observed in APL (M3) samples, but not in other types of acute nonlymphoid leukemias. Immunocytochemical labeling with PG-M3 was particularly useful in the diagnosis of microgranular variant of APL (M3V) (three cases misdiagnosed as M4 and M5), and also to exclude a morphologic misdiagnosis of APL (six of 78 cases). In all cases investigated, immunocytochemical results were in agreement with those of reverse transcription-polymerase chain reaction (RT-PCR) for PML/RARα. Because the epitope identified by PG-M3 is located in the aminoterminal portion of PML (AA 37 to 51), the antibody was suitable for recognizing APL cases characterized by breakpoint occurring at different sites of PML (bcr 1, bcr 2 and bcr 3). In conclusion, immunocytochemical labeling with PG-M3 represents a rapid, sensitive, and highly-specific test for the diagnosis of APL that bears the t(15; 17). This should allow an easy and correct diagnosis of this subtype of acute leukemia to any laboratory provided with a minimal equipment for immunocytochemistry work.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1267-1267
Author(s):  
Katharina Korf ◽  
Harald Wodrich ◽  
Alexander Haschke ◽  
Ron M. Evans ◽  
Thomas M. Sternsdorf

Abstract Although Acute Promyelocytic Leukemia (APL) has become a curable disease due to in-depth understanding of the underlying molecular processes, its investigation has provided unique and valuable insights into the processes involved in leukemogenesis. Therefore we use it as a model disease. 99% of APL-patients express a PML-RAR fusion protein. While involvement of RAR has proven indispensable for oncogenicity, the role of the PML domain is far less clear. In our previous study (Sternsdorf et al., Cancer Cell, 2006) we found that substitution of PML with heterologous self-interaction domains suffices to induce leukemias, but drastically decreases oncogenic potency of the resulting fusion proteins. In this study, we have chosen the inverse strategy: we have modified the PML domain to create a more active artificial model oncoprotein by adapting PR to its biological environment: As the typical model organism for APL studies is the mouse, we have replaced the human PML domain with the murine PML domain. This oncoprotein (mPR) creates APL-type leukemias in mice with higher penetrance and shorter latency than its human counterpart, hPR. We have used this system to study immediate early effects of expression of the model oncoprotein. While proliferating murine bone marrow cells go into senescence ex vivo, expression of mPR prevents this and robustly immortalizes murine bone marrow from every mouse strain tested so far. Senescence-associated upregulation of the cell-cycle regulators p21 and p19 was efficiently blocked by mPR expression. In mouse cells, mPR exhibits higher potency in disrupting the PML-associated Daxx/ATRX complex than hPR. Knockdown of ATRX, but not Daxx ameliorated ATRA-induced growth suppression and p21 upregulation in the human APL model cell line NB4. These data suggest, that PML-RAR promotes leukemogenesis by disrupting the Daxx/ATRX complex, which assembles at PML nuclear bodies during the onset of senescence. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5217-5217
Author(s):  
Yeung-Chul Mun ◽  
Jee-Young Ahn ◽  
Eun-Sun Yoo ◽  
Kyoung Min Cho ◽  
Kyoung Eun Lee ◽  
...  

Abstract Backgrounds: The Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia (APL), but in some cases, APL cells are resistant to ATO treatment. ATO exerts its effect mainly raising oxidative stress. However, not only the mechanisms of reactive oxygen species (ROS) generation by ATO but involvement of redox enzymes including peroxiredoxin (PRX) during ATO-induced apoptosis and its resistance remain elusive. Recently, Rhee et al had reported that PRX III and sufiredoxin together protect mice from pyrazole-induced oxidative liver injury was found (Antioxid & Redox Signal, 2012:17:1351-1361). Aims of current study are to elucidate that the changes of redox enzyme could be a mechanism of anti-leukemia effect in APL-derived NB4 cells during ATO treatment and to find ways to potentiate the anti-leukemic effects of ATO on APL cells. Methods: NB4, one of the human acute promyelocytic leukemia cell lines, was treated with 0~10 μM arsenic trioxide to induce apoptosis for 16-48 hours in RPMI-1640 medium supplemented with 10% FBS in CO2humidified atmosphere at 37°C. Apoptosis was measured by staining with 7-amino-actinomycin D (7-AAD) with flow cytometry. 2, 7-dichlrodihydro-fluorescein-diacetate (H2DCF-DA) and MitoSOX Red was used to detect cellular and mitochondrial ROS. SO2 form for PRX I, PRX II, and PRX III was detected by western blot assay using PRX SO2 form-specific antibody. Sulfiredoxin (SRX) and caspase 3, 9 were also detected by western blot analysis. To evaluate the effect of SRX depletion, NB4 cells were transfected with small interfering RNA (siRNA). Results: Intracellular ROS of NB4 cells was increased significantly after 16 hour of ATO treatment but decreased after 24 hour of ATO treatment. Mitochondrial ROS of NB4 cells was increased significantly after 39 hour of ATO treatment. Apoptosis of NB4 cell after ATO treatment was increased as time elapsed (24% on 16hr, 26% on 24hr, 48% on 39hr, and 60% on 48hr). Increased cysteine sulfinic acid (Cys–SO2H) PRX III, inactive and oxidized form, was observed as a hyperoxidation reaction in NB4 cells after ATO treatment in concordance with mitochondrial ROS increment of NB4 cells. Increased expressions of cleaved caspase-9 and cleaved caspase-3 were also observed during NB4 cell apoptosis by ATO treatment. Meanwhile, SRX expression was increased in NB4 cells after ATO treatment. Down regulation of SRX by siRNA promoted ROS generation and apoptosis in ATO-treated NB4 cells. Conclusions: Our data showed inactivation of PRX III by Cys–SO2H formation as hyperoxidation is developed during ATO-induced mitochondrial ROS generation and apoptosis process in APL cells. In addition, ATO promotes expression of SRX, which is known as reducing enzyme of Cys–SO2H PRX and which leads to down regulation of ROS accumulation in APL cells. These findings might be due to protective effect of SRX from ATO on mitochondrial oxidative stress. These findings suggest ATO-induced anti-leukemic activity could be down regulated by an enhancing PRX III reduction after ATO-induced SRX activation. Currently, the effect of down regulation of SRX by siRNA are being investigated to amplify the apoptosis in ATO-treated NB4 cells. Our study may provide the insights for finding novel targets in the development of new therapies, which potentiate ATO-induced apoptosis in APL cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4432-4432
Author(s):  
Eliane Maquarre ◽  
Cedric Artus ◽  
Zeineb Gadhoum ◽  
Claude Jasmin ◽  
Florence Smadja-Joffe ◽  
...  

Abstract We have recently reported that ligation of the CD44 cell surface antigen with A3D8 monoclonal antibody (mAb) triggers incomplete differentiation and apoptosis of the acute promyelocytic leukemia (APL)-derived NB4 cells. The present study characterizes the mechanisms underlying the apoptotic effect of A3D8 in NB4 cells. We show that A3D8 induces activation of both initiator caspase -8 and -9, and effector caspase-3 and -7 but only inhibition of caspase-3/7 and caspase-8 reduces A3D8-induced apoptosis. Moreover, A3D8 induces mitochondrial alterations (decrease in mitochondrial membrane potential ΔΨm and cytochrome c release) which are reduced by caspase-8 inhibitor suggesting that caspase-8 is primarily involved in A3D8-induced apoptosis of NB4 cells. However, the apoptotic process is independent of TNF-family death receptor signalling. Interestingly, the general serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) decreases A3D8-induced apoptosis and when combined with general caspase inhibitor displays an additive effect resulting in complete prevention of apoptosis. These results suggest that both caspase-dependent and serine protease-dependent pathways contribute to A3D8-induced apoptosis. Finally, A3D8 induces apoptosis in ATRA-resistant NB4-derived cells and in APL primary blasts, characterizing the A3D8 anti-CD44 mAb as a novel class of apoptosis-inducing agent in APL.


Sign in / Sign up

Export Citation Format

Share Document