Dynamic analysis of crack problems in functionally graded materials using a new graded singular finite element

2018 ◽  
Vol 93 ◽  
pp. 183-194 ◽  
Author(s):  
Mohamad Molavi Nojumi ◽  
Xiaodong Wang
Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Author(s):  
Licheng Guo ◽  
Zhihai Wang ◽  
Naotake Noda

This study aimed to develop a method to build a ‘bridge’ between the macro fracture mechanics model and stochastic micromechanics-based properties so that the macro fracture mechanics model can be expanded to the fracture mechanics problem of functionally graded materials (FGMs) with stochastic mechanical properties. An analytical fracture mechanics model is developed to predict the stress intensity factors (SIFs) in FGMs with stochastic uncertainties in phase volume fractions. Considering the stochastic description of the phase volume fractions, a micromechanics-based method is developed to derive the explicit probabilistic characteristics of the effective properties of the FGMs so that the stochastic mechanical properties can be combined with the macro fracture mechanics model. A thought for choosing the samples efficiently is proposed so that the stable probabilistic characteristic of SIFs can be obtained with a very small sample size. The probability density function of SIFs can be determined by developing a histogram from the generated samples. The present method may provide a thought to establish an analytical model for the crack problems of FGMs with stochastic properties.


2007 ◽  
Vol 18-19 ◽  
pp. 253-261
Author(s):  
John A. Akpobi ◽  
C.O. Edobor

In this paper, a finite elment-eigenvalue method is formulated to solve the finite element models of time dependent temperature field problems in non-homogeneous materials such as functionally graded materials (FGMs). The method formulates an eigenvalue problem from the original finite element model and proceeds to calculate the associated eigenvectors from which the solution can be obtained. The results obtained highly accurate and are exponential functions of time which when compared with the exact solution tended fast to the steady state solution.


Sign in / Sign up

Export Citation Format

Share Document