scholarly journals Flow structures, nonlinear inertial waves and energy transfer in rotating spheres

Author(s):  
Tianyi Li ◽  
Minping Wan ◽  
Shiyi Chen
2009 ◽  
Vol 102 (1) ◽  
Author(s):  
Itamar Kolvin ◽  
Kobi Cohen ◽  
Yuval Vardi ◽  
Eran Sharon

2021 ◽  
Vol 933 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Shiyi Chen

The analogy between rotating shear flow and thermal convection suggests the existence of plumes, inertial waves and plume currents in plane Poiseuille flow under spanwise rotation. The existence of these flow structures is examined with the results of three-dimensional and two-dimensional three-component direct numerical simulations. The dynamics of plumes near the unstable side is embodied in a truncated exponential distribution of turbulent fluctuations. For large rotation numbers, inertial waves are identified near the stable side, and these can be used to explain the abnormal flow statistics, such as the large root-mean-square of the streamwise velocity fluctuation and the nearly negligible Reynolds shear stress. For small or medium rotation numbers, plumes generated from the unstable side form large-scale plume currents and the patterns of the plume currents show different capabilities in scalar transport.


Author(s):  
James C. McWilliams

This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing. Consideration is given to their generation mechanisms, instabilities, life cycles, disruption of approximately diagnostic force balance (e.g. geostrophy), turbulent cascades, internal-wave interactions, and transport and dispersion of materials. At a fundamental level, more questions remain than answers, implicating a programme for further research.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Sign in / Sign up

Export Citation Format

Share Document