Standard formation enthalpies of gas phase molecular complexes derived by taking into account the heat capacity difference of the gas phase dissociation processes: Experimental tensimetry data revisited

2020 ◽  
Vol 686 ◽  
pp. 178571
Author(s):  
E.I. Davydova ◽  
Yu.V. Kondrat’ev ◽  
A.S. Lisovenko ◽  
A.V. Pomogaeva ◽  
T.N. Sevastianova ◽  
...  
2020 ◽  
Author(s):  
John Simmie

<div>Both the computation of, and the uncertainties associated, with gas-phase molar formation enthalpies are now quite well established for systems comprised of tens of ‘heavy’ atoms chosen from the commonest elements. The same cannot be said for derived thermochemical quantities such as entropy, heat capacity and an enthalpy function. Whilst the application of well known statistical thermodynamic relations is mostly understood, the determination of the uncertainty with which such values can be obtained has been little studied — apart, that is, for a general protocol devised by Goldsmith et al. [J. Phys. Chem. A, 2012, 116, 9033–9057]. Specific examples from that work are explored here and it is shown that their estimates are overly pessimistic. It is also evident that for some species the calculated thermochemical parameters show very little variation with either the level of theory, or basis set, or treatment of vibrational modes — this renders the inclusion of such species in databases designed to validate new methods of limited value.<br></div>


2020 ◽  
Author(s):  
John Simmie

<div>Both the computation of, and the uncertainties associated, with gas-phase molar formation enthalpies are now quite well established for systems comprised of tens of ‘heavy’ atoms chosen from the commonest elements. The same cannot be said for derived thermochemical quantities such as entropy, heat capacity and an enthalpy function. Whilst the application of well known statistical thermodynamic relations is mostly understood, the determination of the uncertainty with which such values can be obtained has been little studied — apart, that is, for a general protocol devised by Goldsmith et al. [J. Phys. Chem. A, 2012, 116, 9033–9057]. Specific examples from that work are explored here and it is shown that their estimates are overly pessimistic. It is also evident that for some species the calculated thermochemical parameters show very little variation with either the level of theory, or basis set, or treatment of vibrational modes — this renders the inclusion of such species in databases designed to validate new methods of limited value.<br></div>


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


1999 ◽  
Vol 71 (19) ◽  
pp. 4427-4429 ◽  
Author(s):  
W. Andy Tao ◽  
Duxi Zhang ◽  
Feng Wang ◽  
Peter D. Thomas ◽  
R. Graham Cooks

2018 ◽  
Vol 63 (10) ◽  
pp. 3727-3732
Author(s):  
Atsushi Matsuguchi ◽  
Noboru Kagawa ◽  
Koichi Watanabe

2021 ◽  
Vol 2119 (1) ◽  
pp. 012140
Author(s):  
N I Matskevich ◽  
V N Shlegel ◽  
D A Samoshkin ◽  
S V Stankus ◽  
A N Semerikova ◽  
...  

Abstract For the first time, single crystals of undoped lithium tungstate and lithium tungstate doped by 1.25% molybdenum were grown by the low-temperature-gradient Czochralski technique. The standard formation enthalpies, lattices enthalpies, stabilization energies, and the heat capacity were determined in the temperature range of 320-997 K. The lattice enthalpy dependence on Mo content was constructed.


2015 ◽  
Vol 80 (19) ◽  
pp. 9468-9479 ◽  
Author(s):  
Sihang Xu ◽  
Yong Zhang ◽  
Ramu Errabelli ◽  
Athula B. Attygalle

Sign in / Sign up

Export Citation Format

Share Document