scholarly journals Unknown Knowns: Case Studies in Uncertainties in the Computation of Thermochemical Parameters

Author(s):  
John Simmie

<div>Both the computation of, and the uncertainties associated, with gas-phase molar formation enthalpies are now quite well established for systems comprised of tens of ‘heavy’ atoms chosen from the commonest elements. The same cannot be said for derived thermochemical quantities such as entropy, heat capacity and an enthalpy function. Whilst the application of well known statistical thermodynamic relations is mostly understood, the determination of the uncertainty with which such values can be obtained has been little studied — apart, that is, for a general protocol devised by Goldsmith et al. [J. Phys. Chem. A, 2012, 116, 9033–9057]. Specific examples from that work are explored here and it is shown that their estimates are overly pessimistic. It is also evident that for some species the calculated thermochemical parameters show very little variation with either the level of theory, or basis set, or treatment of vibrational modes — this renders the inclusion of such species in databases designed to validate new methods of limited value.<br></div>

2020 ◽  
Author(s):  
John Simmie

<div>Both the computation of, and the uncertainties associated, with gas-phase molar formation enthalpies are now quite well established for systems comprised of tens of ‘heavy’ atoms chosen from the commonest elements. The same cannot be said for derived thermochemical quantities such as entropy, heat capacity and an enthalpy function. Whilst the application of well known statistical thermodynamic relations is mostly understood, the determination of the uncertainty with which such values can be obtained has been little studied — apart, that is, for a general protocol devised by Goldsmith et al. [J. Phys. Chem. A, 2012, 116, 9033–9057]. Specific examples from that work are explored here and it is shown that their estimates are overly pessimistic. It is also evident that for some species the calculated thermochemical parameters show very little variation with either the level of theory, or basis set, or treatment of vibrational modes — this renders the inclusion of such species in databases designed to validate new methods of limited value.<br></div>


2014 ◽  
Vol 16 (40) ◽  
pp. 22062-22072 ◽  
Author(s):  
M. A. Martin-Drumel ◽  
O. Pirali ◽  
C. Falvo ◽  
P. Parneix ◽  
A. Gamboa ◽  
...  

Gas phase spectra of six bi-phenyl molecules are reported allowing an accurate determination of their active low-frequency vibrational modes.


2018 ◽  
Vol 54 (2C) ◽  
pp. 299
Author(s):  
Chinh Thi Ngo

Antioxidant properties of ergothioneine (ESH) have been investigated via hydrogen atomtransfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton losselectron transfer (SPLET) mechanisms. Three new DFT methods including M06, WB97XD andTPSSTPSS at the 6-311++G(2df,2p) basis set were used to compute the thermochemicalparameters of ESH in the gas phase. Based on these methods, bond dissociation enthalpy (BDE),ionization energy (IE), proton dissociation enthalpy (PDE), proton affinity (PA) and electrontransfer enthalpy (ETE) were calculated. The results were also compared with the valuesobtained by B3LYP method. The calculated results show that ergothioneine plays a role as apotential antioxidant via HAT mechanism.


2019 ◽  
Author(s):  
Drew P. Harding ◽  
Laura J. Kingsley ◽  
Glen Spraggon ◽  
Steven Wheeler

The intrinsic (gas-phase) stacking energies of natural and artificial nucleobases were explored using density functional theory (DFT) and correlated ab initio methods. Ranking the stacking strength of natural nucleobase dimers revealed a preference in binding partner similar to that seen from experiments, namely G > C > A > T > U. Decomposition of these interaction energies using symmetry-adapted perturbation theory (SAPT) showed that these dispersion dominated interactions are modulated by electrostatics. Artificial nucleobases showed a similar stacking preference for natural nucleobases and were also modulated by electrostatic interactions. A robust predictive multivariate model was developed that quantitively predicts the maximum stacking interaction between natural and a wide range of artificial nucleobases using molecular descriptors based on computed electrostatic potentials (ESPs) and the number of heavy atoms. This model should find utility in designing artificial nucleobase analogs that exhibit stacking interactions comparable to those of natural nucleobases. Further analysis of the descriptors in this model unveil the origin of superior stacking abilities of certain nucleobases, including cytosine and guanine.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


1997 ◽  
Vol 36 (11) ◽  
pp. 101-106 ◽  
Author(s):  
January Bien ◽  
Lidia Wolny

Studies of sewage sludge conditioning by ultrasonic field concentrate on determination of the increase of water removal effect, which depends on kind of sludge and chemical compounds used in the dewatering process. An attempt was made to find new methods of sludge preparation before dewatering. Tests presented here focused on digested and difficult dewatered sludge. The sludge was dewatered on a vacuum filter after conditioning with polyelectrolytes and the ultrasonic field. The microscopic analysis was an additional criterion to evaluate changes in the sludge structure after preparation. The polyelectrolyte dose of 3 mg/g d.m. sonicated within 15 sec. resulted in the 50% decrease of sludge volume. Results presented confirmed our previous experiences, concerning the relation between conglomerates of sludge and the effect of dewatering.


Sign in / Sign up

Export Citation Format

Share Document