knudsen effusion mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 3)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1478
Author(s):  
Anatoliy M. Dunaev ◽  
Vladimir B. Motalov ◽  
Lev S. Kudin

A multi-technique approach based on Knudsen effusion mass spectrometry, gas phase chromatography, mass spectrometry, NMR and IR spectroscopy, thermal analysis, and quantum-chemical calculations was used to study the evaporation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4). The saturated vapor over BMImBF4 was shown to have a complex composition which consisted of the neutral ion pairs (NIPs) [BMIm+][BF4−], imidazole-2-ylidene C8N2H14BF3, 1-methylimidazole C4N2H6, 1-butene C4H8, hydrogen fluoride HF, and boron trifluoride BF3. The vapor composition strongly depends on the evaporation conditions, shifting from congruent evaporation in the form of NIP under Langmuir conditions (open surface) to primary evaporation in the form of decomposition products under equilibrium conditions (Knudsen cell). Decomposition into imidazole-2-ylidene and HF is preferred. The vapor composition of BMImBF4 is temperature-depended as well: the fraction ratio of [BMIm+][BF4−] NIPs to decomposition products decreased by about a factor of three in the temperature range from 450 K to 510 K.


Author(s):  
Viktor A. Vorozhtcov ◽  
Valentina L. Stolyarova ◽  
Andrey L. Shilov ◽  
Sergey I. Lopatin ◽  
Sergey M. Shugurov ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 397
Author(s):  
Petroc Shelley ◽  
Thomas J. Bannan ◽  
Stephen D. Worrall ◽  
M. Rami Alfarra ◽  
Carl J. Percival ◽  
...  

Benzaldehydes are components of atmospheric aerosol that are poorly represented in current vapour pressure predictive techniques. In this study the solid state (PSsat) and sub-cooled liquid saturation vapour pressures (PLsat) were measured over a range of temperatures (298–328 K) for a chemically diverse group of benzaldehydes. The selected benzaldehydes allowed for the effects of varied geometric isomers and functionalities on saturation vapour pressure (Psat) to be probed. PSsat was measured using Knudsen effusion mass spectrometry (KEMS) and PLsat was obtained via a sub-cooled correction utilising experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The strength of the hydrogen bond (H-bond) was the most important factor for determining PLsat when a H-bond was present and the polarisability of the compound was the most important factor when a H-bond was not present. Typically compounds capable of hydrogen bonding had PLsat 1 to 2 orders of magnitude lower than those that could not H-bond. The PLsat were compared to estimated values using three different predictive techniques (Nannoolal et al. vapour pressure method, Myrdal and Yalkowsky method, and SIMPOL). The Nannoolal et al. vapour pressure method and the Myrdal and Yalkowsky method require the use of a boiling point method to predict Psat. For the compounds in this study the Nannoolal et al. boiling point method showed the best performance. All three predictive techniques showed less than an order of magnitude error in PLsat on average, however more significant errors were within these methods. Such errors will have important implications for studies trying to ascertain the role of these compounds on aerosol growth and human health impacts. SIMPOL predicted PLsat the closest to the experimentally determined values.


2021 ◽  
Author(s):  
Lukas Bischof ◽  
Dmitry Sergeev ◽  
Paolo Sossi ◽  
Max W. Schmidt ◽  
Michael Müller

2020 ◽  
Vol 20 (14) ◽  
pp. 8293-8314
Author(s):  
Petroc D. Shelley ◽  
Thomas J. Bannan ◽  
Stephen D. Worrall ◽  
M. Rami Alfarra ◽  
Ulrich K. Krieger ◽  
...  

Abstract. Knudsen effusion mass spectrometry (KEMS) was used to measure the solid state saturation vapour pressure (PSsat) of a range of atmospherically relevant nitroaromatic compounds over the temperature range from 298 to 328 K. The selection of species analysed contained a range of geometric isomers and differing functionalities, allowing for the impacts of these factors on saturation vapour pressure (Psat) to be probed. Three subsets of nitroaromatics were investigated: nitrophenols, nitrobenzaldehydes and nitrobenzoic acids. The PSsat values were converted to subcooled liquid saturation vapour pressure (PLsat) values using experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The PLsat values were compared to those estimated by predictive techniques and, with a few exceptions, were found to be up to 7 orders of magnitude lower. The large differences between the estimated PLsat and the experimental values can be attributed to the predictive techniques not containing parameters to adequately account for functional group positioning around an aromatic ring, or the interactions between said groups. When comparing the experimental PSsat of the measured compounds, the ability to hydrogen bond (H bond) and the strength of the H bond formed appear to have the strongest influence on the magnitude of the Psat, with steric effects and molecular weight also being major factors. Comparisons were made between the KEMS system and data from diffusion-controlled evaporation rates of single particles in an electrodynamic balance (EDB). The KEMS and the EDB showed good agreement with each other for the compounds investigated.


Sign in / Sign up

Export Citation Format

Share Document