scholarly journals Tectono-Sedimentary evolution and geochronology of the Middle Miocene Altınapa Basin, and implications for the Late Cenozoic uplift history of the Taurides, southern Turkey

2012 ◽  
Vol 532-535 ◽  
pp. 134-155 ◽  
Author(s):  
Ayten Koç ◽  
Nuretdin Kaymakci ◽  
Douwe J.J. van Hinsbergen ◽  
Klaudia F. Kuiper ◽  
Reinoud L.M. Vissers
2009 ◽  
Vol 59 (7-8) ◽  
pp. 423-438 ◽  
Author(s):  
Osamu Fujiwara ◽  
Yukio Yanagisawa ◽  
Toshiaki Irizuki ◽  
Masanori Shimamoto ◽  
Hiroki Hayashi ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 67-92
Author(s):  
Eduardo López- Ramos

The subsidence and uplift history of the forearc system of southwestern Colombia and northern Ecuador margin is complex and reveals several stages of deformation. The sequential stratigraphy of the forearc area shows the development of three megasequences (M1 to M3). The basal megasequence corresponds to the basement of the forearc, which was formed at the end of the Mesozoic and at the beginning of the Cenozoic and accreted against the Northwestern part of South America related to the accretion of the Late Cretaceous – Paleoceneoceanic plateau. This accretion occurred in a transpressional regime. The second megasequence is composed by deep water sediments, recording the transition between transpressional to compressional stages of the margin from the Late Eocene to the Middle Miocene. The third megasequence is characterized by shallow water sediments strongly constrained by the compressional stage of the margin and the uplift activity of the structural highs since the Late Miocene up to present. The structural geometry of the margin is characterized by basement thrusts that deformed the forearc crust. Westward, the forearc zone -according to the support of the overriding plate -is divided into mantle wedge and lower plate domains. The margin evolution suggests that the subducting plate geodynamical changes affect strongly the interplate coupling and mantle wedge and produce changes in the subsidence or uplift through the double forearc basin systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yamila P. Cardoso ◽  
Luiz Jardim de Queiroz ◽  
Ilham A. Bahechar ◽  
Paula E. Posadas ◽  
Juan I. Montoya-Burgos

AbstractDistribution history of the widespread Neotropical genus Hypostomus was studied to shed light on the processes that shaped species diversity. We inferred a calibrated phylogeny, ancestral habitat preference, ancestral areas distribution, and the history of dispersal and vicariance events of this genus. The phylogenetic and distribution analyses indicate that Hypostomus species inhabiting La Plata Basin do not form a monophyletic clade, suggesting that several unrelated ancestral species colonized this basin in the Miocene. Dispersal to other rivers of La Plata Basin started about 8 Mya, followed by habitat shifts and an increased rate of cladogenesis. Amazonian Hypostomus species colonized La Plata Basin several times in the Middle Miocene, probably via the Upper Paraná and the Paraguay rivers that acted as dispersal corridors. During the Miocene, La Plata Basin experienced marine incursions, and geomorphological and climatic changes that reconfigured its drainage pattern, driving dispersal and diversification of Hypostomus. The Miocene marine incursion was a strong barrier and its retraction triggered Hypostomus dispersal, increased speciation rate and ecological diversification. The timing of hydrogeological changes in La Plata Basin coincides well with Hypostomus cladogenetic events, indicating that the history of this basin has acted on the diversification of its biota.


Tectonics ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Valerio Olivetti ◽  
Andrew J. Cyr ◽  
Paola Molin ◽  
Claudio Faccenna ◽  
Darryl E. Granger

2021 ◽  
Vol 9 ◽  
Author(s):  
Dongxu Cai ◽  
Xianyan Wang ◽  
Guangwei Li ◽  
Wenbin Zhu ◽  
Huayu Lu

The interaction of surface erosion (e.g., fluvial incision) and tectonic uplift shapes the landform in the Tibetan Plateau. The Lhasa River flows toward the southwest across the central Gangdese Mountains in the southern Tibetan Plateau, characterized by a low-relief and high-elevation landscape. However, the evolution of low-relief topography and the establishment of the Lhasa River remain highly under debate. Here, we collected thermochronological ages reported in the Lhasa River drainage, using a 3D thermokinematic model to invert both late Cenozoic denudation and relief history of the Lhasa River drainage. Our results show that the Lhasa River drainage underwent four-phase denudation history, including two-stage rapid denudation at ∼25–16 Ma (with a rate of ∼0.42 km/Ma) and ∼16–12 Ma (with a rate of ∼0.72 km/Ma). In the latest Oligocene–early Miocene, uplift of the Gangdese Mountains triggered the rapid denudation and the formation of the current main drainage of the Lhasa River. In the middle Miocene, the second stage of the rapid denudation and the high relief were associated with intense incision of the Lhasa River, which is probably due to the enhanced Asian summer monsoon precipitation. This later rapid episode was consistent with the records of regional main drainage systems. After ∼12 Ma, the denudation rate decreases rapidly, and the relief of topography in the central Gangdese region was gradually subdued. This indicates that the fluvial erosion resulting from Asian monsoon precipitation increase significantly impacts on the topographic evolution in the central Gangdese region.


Sign in / Sign up

Export Citation Format

Share Document