scholarly journals Origin of a double forearc basin: The example of the Tumaco - Manglares basin, Northestern Southamerica

2020 ◽  
Vol 10 (1) ◽  
pp. 67-92
Author(s):  
Eduardo López- Ramos

The subsidence and uplift history of the forearc system of southwestern Colombia and northern Ecuador margin is complex and reveals several stages of deformation. The sequential stratigraphy of the forearc area shows the development of three megasequences (M1 to M3). The basal megasequence corresponds to the basement of the forearc, which was formed at the end of the Mesozoic and at the beginning of the Cenozoic and accreted against the Northwestern part of South America related to the accretion of the Late Cretaceous – Paleoceneoceanic plateau. This accretion occurred in a transpressional regime. The second megasequence is composed by deep water sediments, recording the transition between transpressional to compressional stages of the margin from the Late Eocene to the Middle Miocene. The third megasequence is characterized by shallow water sediments strongly constrained by the compressional stage of the margin and the uplift activity of the structural highs since the Late Miocene up to present. The structural geometry of the margin is characterized by basement thrusts that deformed the forearc crust. Westward, the forearc zone -according to the support of the overriding plate -is divided into mantle wedge and lower plate domains. The margin evolution suggests that the subducting plate geodynamical changes affect strongly the interplate coupling and mantle wedge and produce changes in the subsidence or uplift through the double forearc basin systems.

2009 ◽  
Vol 59 (7-8) ◽  
pp. 423-438 ◽  
Author(s):  
Osamu Fujiwara ◽  
Yukio Yanagisawa ◽  
Toshiaki Irizuki ◽  
Masanori Shimamoto ◽  
Hiroki Hayashi ◽  
...  

2014 ◽  
Vol 10 (6) ◽  
pp. 1957-1966 ◽  
Author(s):  
J.-B. Ladant ◽  
Y. Donnadieu ◽  
C. Dumas

Abstract. The timing of the onset of the Antarctic Circumpolar Current (ACC) is a crucial event of the Cenozoic because of its cooling and isolating effect over Antarctica. It is intimately related to the glaciations occurring throughout the Cenozoic from the Eocene–Oligocene (EO) transition (≈ 34 Ma) to the middle Miocene glaciations (≈ 13.9 Ma). However, the exact timing of the onset remains debated, with evidence for a late Eocene setup contradicting other data pointing to an occurrence closer to the Oligocene–Miocene (OM) boundary. In this study, we show the potential impact of the Antarctic ice sheet on the initiation of a strong proto-ACC at the EO boundary. Our results reveal that the regional cooling effect of the ice sheet increases sea ice formation, which disrupts the meridional density gradient in the Southern Ocean and leads to the onset of a circumpolar current and its progressive strengthening. We also suggest that subsequent variations in atmospheric CO2, ice sheet volumes and tectonic reorganizations may have affected the ACC intensity after the Eocene–Oligocene transition. This allows us to build a hypothesis for the Cenozoic evolution of the Antarctic Circumpolar Current that may provide an explanation for the second initiation of the ACC at the Oligocene–Miocene boundary while reconciling evidence supporting both early Oligocene and early Miocene onset of the ACC.


2012 ◽  
Vol 532-535 ◽  
pp. 134-155 ◽  
Author(s):  
Ayten Koç ◽  
Nuretdin Kaymakci ◽  
Douwe J.J. van Hinsbergen ◽  
Klaudia F. Kuiper ◽  
Reinoud L.M. Vissers

Author(s):  
P Riandini

West Natuna Basin (WNB) is located in the centre of Sunda Shelf in South China Sea; bordered by the Sunda Shelf's basement to the south, the Natuna Arch to the east, and the Khorat Swell to the north. Tectonic evolution of the WNB has imparted a complex structural history of extension, compression and wrenching related to Cenozoic regional tectonic events, for which the structural evolution reflects a history of Late Eocene-Early Oligocene rifting and Middle-Late Miocene inversion. The regional strike-slip movement that associates to the Three Pagodas Fault System has long been recognised at WNB. However, the understanding of this strike-slip behaviour has not previously been investigated despite its important role in reservoir mapping. This study aims to demonstrate how new approaches of seismic attributes analysis combined with structural evolution through palinspastic reconstruction will define the structural geometry as a key point for fault relationship in the production field. Structure map and cross section are generated by integrating wells data and 3D seismic to identify structural trends. Seismic low frequency magnitude has been generated as an attribute to define faults through Spectral Decomposition method. As the faults feature on the seismic are more related to low or even absent of energy, these attributes provide robust attributes to identify four morphology in study area that represent different structural geometry and history. Seismic interpretation shows the structure commences in the early part of the Late Eocene that developed as NE-SW rifting. The rifting is initiated due to creation of pull-apart basins, as part of the WNW-ESE sinistral strike-slip fault development. The major sinistral strike-slip development was accommodated by collision of India that causes onset of rotation of Sundaland. In relation to the oblique NNE-SSW compression, Middle-Late Miocene inversion follows the post-rift deformation. This condition accommodates the development of NW-SE right lateral strike-slip on the marginal fault and result in N-S trending horsetail structure development that plays a role as an essential structure for reservoir trap.This research verifies that the combination between recent re-evaluations of the 3D seismic and its attributes can identify more detailed fault positions to generate better definitions of fault patterns. Therefore, palinspastic restoration becomes one of the classic approaches that brings further comprehension of the fault pattern’s structural evolutions, which leads to the site-development and production’s improvements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yamila P. Cardoso ◽  
Luiz Jardim de Queiroz ◽  
Ilham A. Bahechar ◽  
Paula E. Posadas ◽  
Juan I. Montoya-Burgos

AbstractDistribution history of the widespread Neotropical genus Hypostomus was studied to shed light on the processes that shaped species diversity. We inferred a calibrated phylogeny, ancestral habitat preference, ancestral areas distribution, and the history of dispersal and vicariance events of this genus. The phylogenetic and distribution analyses indicate that Hypostomus species inhabiting La Plata Basin do not form a monophyletic clade, suggesting that several unrelated ancestral species colonized this basin in the Miocene. Dispersal to other rivers of La Plata Basin started about 8 Mya, followed by habitat shifts and an increased rate of cladogenesis. Amazonian Hypostomus species colonized La Plata Basin several times in the Middle Miocene, probably via the Upper Paraná and the Paraguay rivers that acted as dispersal corridors. During the Miocene, La Plata Basin experienced marine incursions, and geomorphological and climatic changes that reconfigured its drainage pattern, driving dispersal and diversification of Hypostomus. The Miocene marine incursion was a strong barrier and its retraction triggered Hypostomus dispersal, increased speciation rate and ecological diversification. The timing of hydrogeological changes in La Plata Basin coincides well with Hypostomus cladogenetic events, indicating that the history of this basin has acted on the diversification of its biota.


Tectonics ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Valerio Olivetti ◽  
Andrew J. Cyr ◽  
Paola Molin ◽  
Claudio Faccenna ◽  
Darryl E. Granger

Tectonics ◽  
2008 ◽  
Vol 27 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Julien Collot ◽  
Louis Geli ◽  
Yves Lafoy ◽  
Roland Vially ◽  
Dominique Cluzel ◽  
...  

2019 ◽  
Vol 4 (3) ◽  
pp. 208-212
Author(s):  
JAAP EVERT ABRAHAMSE ◽  
MENNE KOSIAN

‘Sluisbuurt’ Amsterdam: world heritage and high-rise buildings On the northwestern part of the Zeeburgereiland, an island in the IJ, the municipality of Amsterdam is developing the Sluisbuurt quarter: a mixed-use neighbourhood with shops, offices, catering and education and no less than 5,500 residential units, some of which are high-rise. The Sluisbuurt soon proved controversial because of the visibility of the towers from the Amsterdam city centre and from the rural area around Waterland. In this article we discuss the planning and the history of the island.


Sign in / Sign up

Export Citation Format

Share Document