The transition zone between the Eastern Alps and the Pannonian basin imaged by ambient noise tomography

2021 ◽  
Vol 805 ◽  
pp. 228770
Author(s):  
Gyöngyvér Szanyi ◽  
Zoltán Gráczer ◽  
Brigitta Balázs ◽  
István János Kovács
2021 ◽  
Author(s):  
Máté Timkó ◽  
Lars Wiesenberg ◽  
Amr El-Sharkawy ◽  
Zoltán Wéber ◽  
Thomas Meier ◽  
...  

<p>The Pannonian Basin is located in Central-Europe surrounded by the Alpine, Carpathian, and Dinarides mountain ranges. This is a back-arc basin characterized by shallow Moho depth, updoming mantle and high heat flow. In this study, we present the results of the Rayleigh wave based ambient noise tomography to investigate the velocity structure of the Carpathian-Pannonian region. </p><p>For the ambient noise measurements, we collected the continuous waveform data from more than 1280 seismological stations from the broader Central-Eastern European region. This dataset embraces all the permanent and the temporary (AlpArray, PASSEQ, CBP, SCP) stations from the 9-degree radius of the Pannonian Basin which were operating between the time period between 2005 and 2018. All the possible vertical component noise cross-correlation functions were calculated and all phase velocity curves were determined in the 5-80 s period range using an automated measuring algorithm. </p><p>The collected dispersion measurements were then used to create tomographic images that are characterized by similar velocity anomalies in amplitude, pattern and location that are consistent with the well-known tectonic and geologic structure of the research area and are comparable to previous tomographic models published in the literature.</p>


2020 ◽  
Author(s):  
Ehsan Qorbani ◽  
Dimitri Zigone ◽  
Mark R. Handy ◽  
Götz Bokelmann ◽  

Abstract. We study the crustal structure under the Eastern and Southern Alps using ambient noise tomography. We use cross-correlations of ambient seismic noise between pairs of 71 permanent stations and 19 stations of the EASI profile to derive new high-resolution 3-D shear-velocity models for the crust. Continuous records from 2014 and 2015 are cross-correlated to estimate Green's functions of Rayleigh and Love waves propagating between the station pairs. Group velocities extracted from the cross-correlations are inverted to obtain isotropic 3-D Rayleigh and Love-wave shear-wave velocity models. Our high resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. Velocity variations at short periods correlate very closely with the lithologies of tectonic units at the surface and projected to depth. Low-velocity zones, associated with the Po and Molasse sedimentary basins, are imaged well to the south and north of the Alps, respectively. We find large high-velocity zones associated with the crystalline basement that forms the core of the Tauern Window. Small-scale velocity anomalies are also aligned with geological units such as the Ötztal and the Gurktal nappes of the Austroalpine nappes. Clear velocity contrasts in the Tauern Window along vertical cross-sections of the velocity model show the depth extent of the tectonic units and their bounding faults. A mid-crustal velocity contrast is interpreted as a manifestation of intracrustal decoupling in the Eastern Alps and decoupling between the Southern and Eastern Alps.


2016 ◽  
Vol 173 (8) ◽  
pp. 2813-2840 ◽  
Author(s):  
Michael Behm ◽  
Nori Nakata ◽  
Götz Bokelmann

2018 ◽  
Vol 53 (2) ◽  
pp. 221-245 ◽  
Author(s):  
Zoltán Gráczer ◽  
◽  
Gyöngyvér Szanyi ◽  
István Bondár ◽  
Csenge Czanik ◽  
...  

2020 ◽  
Author(s):  
Máté Timkó ◽  
Lars Wiesenberg ◽  
Amr El-Sharkawy ◽  
Zoltán Wéber ◽  
Thomas Meier ◽  
...  

<p>We used Rayleigh wave ambient noise tomography to investigate the crust and uppermost mantle structure of the Pannonian Basin. The Pannonian Basin and the surrounding orogens are located within the arcuate Alpine–Carpathian mountain chain in Central Europe. It is a back-arc basin characterized by a thinned lower crust and an updoming mantle. Benath the basin both the crust and the lithosphere have smaller thickness than the continental average. Imaging the velocity structure of the crust and upper mantle may help us to better understand the structure and formation of the Carpathian–Pannonian region.</p><p>We used data from the permanent seismological stations of the broader Central European region together with the AlpArray Seismic Network (AASN) and analysed one-year seismic data from 2017. More than 18 thousand vertical component noise cross-correlation functions were calculated and Rayleigh wave inter-station phase velocity curves were determined using an automated measuring algorithm. Anisotropic phase velocity tomographic imaging were carried out for the whole Pannonian Basin between 2 and 40s periods (~5-60 km).</p><p>The locations of the retrieved phase-velocity anomalies consistent with the well-known geologic and tectonic structure of the area (deep basins and orogenic belts) and are comparable to recent tomographic models published in the literature.</p>


2018 ◽  
Vol 45 (22) ◽  
pp. 12,293-12,301 ◽  
Author(s):  
D. A. Quiros ◽  
J. Pulliam ◽  
D. Barman ◽  
E. Polanco Rivera ◽  
V. Huerfano

2013 ◽  
Vol 196 (2) ◽  
pp. 1264-1265 ◽  
Author(s):  
Kevin M. Ward ◽  
Ryan C. Porter ◽  
George Zandt ◽  
Susan L. Beck ◽  
Lara S. Wagner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document