Patient monitoring at home using 32-channel cost-effective data acquisition device

2018 ◽  
Vol 35 (4) ◽  
pp. 883-891 ◽  
Author(s):  
Wadee Alhalabi
Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sensors ◽  
2014 ◽  
Vol 14 (6) ◽  
pp. 9755-9775 ◽  
Author(s):  
Darko Hercog ◽  
Bojan Gergič

Author(s):  
Stefan Appelhoff ◽  
Tristan Stenner

AbstractModern experimental research often relies on the synchronization of different events prior to data analysis. One way of achieving synchronization involves marking distinct events with electrical pulses (event markers or “TTL pulses”), which are continuously recorded with research hardware, and can later be temporally aligned. Traditionally, this event marking was often performed using the parallel port in standard personal computers. However, the parallel port is disappearing from the landscape of computer hardware, being replaced by a serial (COM) port, namely the USB port. To find an adequate replacement for the parallel port, we evaluated four microcontroller units (MCUs) and the LabJack U3, an often-used USB data acquisition device, in terms of their latency and jitter for sending event markers in a simulated experiment on both Windows and Linux. Our results show that all four MCUs were comparable to the parallel port in terms of both latency and jitter, and consistently achieved latencies under 1 ms. With some caveats, the LabJack U3 can also achieve comparable latencies. In addition to the collected data, we share extensive documentation on how to build and use MCUs for event marking, including code examples. MCUs are a cost-effective, flexible, and performant replacement for the disappearing parallel port, enabling event marking and synchronization of data streams.


Author(s):  
Xiangqun Chen ◽  
Rui Huang ◽  
Liman Shen ◽  
Hao chen ◽  
Dezhi Xiong ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Yuan-Chieh Chin

An educational platform to improve the test and the evaluation of the experimental data in electric machine laboratory is developed. The system is complement to the course taught of electric machines to undergraduate students. The proposed system can automatically acquire the experimental data from data acquisition device on the personal computer and transfer the data through interface card to the host server. The host sever performs the essential calculations of the obtained parameters. After the students enter their computational value through system interface, the host server could record, compare, estimate, and chart the result in real time. The system not only improves the efficiency of the experimental data evaluation but also provides the online comments including experimental purposes, principles, necessary instrument equipment, special notes, operation procedures, and results recording.


Sign in / Sign up

Export Citation Format

Share Document