Dihedral angle restriction within a peptide-based tertiary alcohol kinetic resolution catalyst

Tetrahedron ◽  
2006 ◽  
Vol 62 (22) ◽  
pp. 5254-5261 ◽  
Author(s):  
Mary C. Angione ◽  
Scott J. Miller
2021 ◽  
Author(s):  
Titouan Desrues ◽  
Xueyang Liu ◽  
Jean-Marc Pons ◽  
Valérie Monnier ◽  
Jean-Arthur Amalian ◽  
...  

2020 ◽  
Vol 56 (19) ◽  
pp. 2885-2888 ◽  
Author(s):  
Franziska Kühn ◽  
Satoko Katsuragi ◽  
Yasuhiro Oki ◽  
Cedric Scholz ◽  
Shuji Akai ◽  
...  

The first example of a dynamic kinetic resolution of a racemic tertiary alcohol is presented. By combining a lipase-catalyzed kinetic resolution and a racemization with an oxovanadium-catalyst, the ester was obtained in 77% yield and with >99% ee.


2020 ◽  
Vol 18 (21) ◽  
pp. 4024-4028
Author(s):  
David D. S. Thieltges ◽  
Kai D. Baumgarten ◽  
Carina S. Michaelis ◽  
Constantin Czekelius

Electronically modified, fluorinated catechins and epicatechins are enantioselectively synthesized in a short, convergent sequence via kinetic resolution.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


2006 ◽  
Author(s):  
Jason Eames ◽  
Gregory Coumbarides ◽  
Marco Dingjan ◽  
Tony Flinn ◽  
Northern Northen ◽  
...  

2020 ◽  
Author(s):  
Kousuke Ebisawa ◽  
Kana Izumi ◽  
Yuka Ooka ◽  
Hiroaki Kato ◽  
Sayori Kanazawa ◽  
...  

Catalytic enantioselective synthesis of tetrahydrofurans, which are found in the structures of many biologically active natural products, via a transition-metal catalyzed-hydrogen atom transfer (TM-HAT) and radical-polar crossover (RPC) mechanism is described herein. Hydroalkoxylation of non-conjugated alkenes proceeded efficiently with excellent enantioselectivity (up to 94% ee) using a suitable chiral cobalt catalyst, <i>N</i>-fluoro-2,4,6-collidinium tetrafluoroborate, and diethylsilane. Surprisingly, absolute configuration of the product was highly dependent on the steric hindrance of the silane. Slow addition of the silane, the dioxygen effect in the solvent, thermal dependency, and DFT calculation results supported the unprecedented scenario of two competing selective mechanisms. For the less-hindered diethylsilane, a high concentration of diffused carbon-centered radicals invoked diastereoenrichment of an alkylcobalt(III) intermediate by a radical chain reaction, which eventually determined the absolute configuration of the product. On the other hand, a more hindered silane resulted in less opportunity for radical chain reaction, instead facilitating enantioselective kinetic resolution during the late-stage nucleophilic displacement of the alkylcobalt(IV) intermediate.


2004 ◽  
Vol 95 (1) ◽  
pp. 3-7 ◽  
Author(s):  
P. Chhillar ◽  
S. Sangal ◽  
A. Upadhyaya

Sign in / Sign up

Export Citation Format

Share Document