Genome mining approach for harnessing the cryptic gene cluster in Alternaria solani: production of PKS–NRPS hybrid metabolite, didymellamide B

2016 ◽  
Vol 57 (25) ◽  
pp. 2793-2796 ◽  
Author(s):  
Takahiro Ugai ◽  
Atsushi Minami ◽  
Katsuya Gomi ◽  
Hideaki Oikawa
2014 ◽  
Vol 58 (10) ◽  
pp. 6185-6196 ◽  
Author(s):  
Marius Spohn ◽  
Norbert Kirchner ◽  
Andreas Kulik ◽  
Angelika Jochim ◽  
Felix Wolf ◽  
...  

ABSTRACTThe emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products isAmycolatopsis. However,Amycolatopsis japonicumdoes not produce an antibiotic under standard laboratory conditions. In contrast to mostAmycolatopsisstrains,A. japonicumis genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, thebbrgene fromAmycolatopsis balhimycina(bbrAba), intoA. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing ofA. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed thein silicoprediction that the recombinantA. japonicum/pRM4-bbrAbasynthesizes ristomycin A.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jin Lü ◽  
Qingshan Long ◽  
Zhilong Zhao ◽  
Lu Chen ◽  
Weijun He ◽  
...  

Bacteria of the genus Saccharopolyspora produce important polyketide antibiotics, including erythromycin A (Sac. erythraea) and spinosad (Sac. spinosa). We herein report the development of an industrial erythromycin-producing strain, Sac. erythraea HOE107, into a host for the heterologous expression of polyketide biosynthetic gene clusters (BGCs) from other Saccharopolyspora species and related actinomycetes. To facilitate the integration of natural product BGCs and auxiliary genes beneficial for the production of natural products, the erythromycin polyketide synthase (ery) genes were replaced with two bacterial attB genomic integration sites associated with bacteriophages ϕC31 and ϕBT1. We also established a highly efficient conjugation protocol for the introduction of large bacterial artificial chromosome (BAC) clones into Sac. erythraea strains. Based on this optimized protocol, an arrayed BAC library was effectively transferred into Sac. erythraea. The large spinosad gene cluster from Sac. spinosa and the actinorhodin gene cluster from Streptomyces coelicolor were successfully expressed in the ery deletion mutant. Deletion of the endogenous giant polyketide synthase genes pkeA1-pkeA4, the product of which is not known, and the flaviolin gene cluster (rpp) from the bacterium increased the heterologous production of spinosad and actinorhodin. Furthermore, integration of pJTU6728 carrying additional beneficial genes dramatically improved the yield of actinorhodin in the engineered Sac. erythraea strains. Our study demonstrated that the engineered Sac. erythraea strains SLQ185, LJ161, and LJ162 are good hosts for the expression of heterologous antibiotics and should aid in expression-based genome-mining approaches for the discovery of new and cryptic antibiotics from Streptomyces and rare actinomycetes.


ChemBioChem ◽  
2013 ◽  
Vol 14 (8) ◽  
pp. 955-962 ◽  
Author(s):  
Roland D. Kersten ◽  
Amy L. Lane ◽  
Markus Nett ◽  
Taylor K. S. Richter ◽  
Brendan M. Duggan ◽  
...  

2013 ◽  
Vol 67 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Wei-Ting Liu ◽  
Anne Lamsa ◽  
Weng Ruh Wong ◽  
Paul D Boudreau ◽  
Roland Kersten ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 2440-2440 ◽  
Author(s):  
Junko Yaegashi ◽  
Jillian Romsdahl ◽  
Yi-Ming Chiang ◽  
Clay C. C. Wang

Correction for ‘Genome mining and molecular characterization of the biosynthetic gene cluster of a diterpenic meroterpenoid, 15-deoxyoxalicine B, in Penicillium canescens’ by Junko Yaegashi et al., Chem. Sci., 2015, 6, 6537–6544.


2011 ◽  
Vol 77 (17) ◽  
pp. 6117-6124 ◽  
Author(s):  
Martin F. Kreutzer ◽  
Hirokazu Kage ◽  
Peter Gebhardt ◽  
Barbara Wackler ◽  
Hans P. Saluz ◽  
...  

ABSTRACTA genome mining study in the plant pathogenic bacteriumRalstonia solanacearumGMI1000 unveiled a polyketide synthase/nonribosomal peptide synthetase gene cluster putatively involved in siderophore biosynthesis. Insertional mutagenesis confirmed the respective locus to be operational under iron-deficient conditions and spurred the isolation of the associated natural product. Bioinformatic analyses of the gene cluster facilitated the structural characterization of this compound, which was subsequently identified as the antimycoplasma agent micacocidin. The metal-chelating properties of micacocidin were evaluated in competition experiments, and the cellular uptake of gallium-micacocidin complexes was demonstrated inR. solanacearumGMI1000, indicating a possible siderophore role. Comparative genomics revealed a conservation of the micacocidin gene cluster in defined, but globally dispersed phylotypes ofR. solanacearum.


ChemBioChem ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 477-487 ◽  
Author(s):  
Leonard Kaysser ◽  
Xiaoyu Tang ◽  
Emmanuel Wemakor ◽  
Katharina Sedding ◽  
Susanne Hennig ◽  
...  

2010 ◽  
Vol 1 (5) ◽  
pp. 581 ◽  
Author(s):  
Filip J. Wyszynski ◽  
Andrew R. Hesketh ◽  
Mervyn J. Bibb ◽  
Benjamin G. Davis

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingyan Zhang ◽  
Ying Sun ◽  
Yeji Wang ◽  
Xin Chen ◽  
Lu Xue ◽  
...  

Abstract Background Rubiginones belong to the angucycline family of aromatic polyketides, and they have been shown to potentiate the vincristine (VCR)-induced cytotoxicity against VCR-resistant cancer cell lines. However, the biosynthetic gene clusters (BGCs) and biosynthetic pathways for rubiginones have not been reported yet. Results In this study, based on bioinformatics analysis of the genome of Streptomyces sp. CB02414, we predicted the functions of the two type II polyketide synthases (PKSs) BGCs. The rub gene cluster was predicted to encode metabolites of the angucycline family. Scale-up fermentation of the CB02414 wild-type strain led to the discovery of eight rubiginones, including five new ones (rubiginones J, K, L, M, and N). Rubiginone J was proposed to be the final product of the rub gene cluster, which features extensive oxidation on the A-ring of the angucycline skeleton. Based on the production profiles of the CB02414 wild-type and the mutant strains, we proposed a biosynthetic pathway for the rubiginones in CB02414. Conclusions A genome mining strategy enabled the efficient discovery of new rubiginones from Streptomyces sp. CB02414. Based on the isolated biosynthetic intermediates, a plausible biosynthetic pathway for the rubiginones was proposed. Our research lays the foundation for further studies on the mechanism of the cytochrome P450-catalyzed oxidation of angucyclines and for the generation of novel angucyclines using combinatorial biosynthesis strategies.


Sign in / Sign up

Export Citation Format

Share Document